KOI-868 , the SIMBAD biblio

KOI-868 , the SIMBAD biblio (40 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.18CEST04:40:31


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2011ApJ...728..117B viz 15       D               1 321 310 Characteristics of Kepler planetary candidates based on the first data set. BORUCKI W.J., KOCH D.G., BASRI G., et al.
2011ApJ...736...19B viz 15       D               1 1507 867 Characteristics of planetary candidates observed by Kepler. II. Analysis of the first four months of data. BORUCKI W.J., KOCH D.G., BASRI G., et al.
2011ApJ...736L..25K viz 15       D               1 92 64 Exploring the habitable zone for Kepler planetary candidates. KALTENEGGER L. and SASSELOV D.
2011ApJ...738..170M viz 15       D               1 997 230 On the low false positive probabilities of Kepler planet candidates. MORTON T.D. and JOHNSON J.A.
2011ApJS..197....2F viz 15       D               1 980 66 Transit timing observations from Kepler. I. Statistical analysis of the first four months. FORD E.B., ROWE J.F., FABRYCKY D.C., et al.
2012ApJ...750L..37M viz 15       D               1 85 128 Characterizing the cool Kepler objects of interests. New effective temperatures, metallicities, masses, and radii of low-mass Kepler planet-candidate host stars. MUIRHEAD P.S., HAMREN K., SCHLAWIN E., et al.
2012ApJ...752...72D viz 15       D               1 229 7 A correlation between the eclipse depths of Kepler gas giant candidates and the metallicities of their parent stars. DODSON-ROBINSON S.E.
2013ApJ...770...43M viz 16       D               1 202 41 Testing the metal of late-type Kepler planet hosts with iron-clad methods. MANN A.W., GAIDOS E., KRAUS A., et al.
2013ApJ...771...18G 78           X         2 135 22 An understanding of the shoulder of giants: jovian planets around late K dwarf stars and the trend with stellar mass. GAIDOS E., FISCHER D.A., MANN A.W., et al.
2013ApJ...775L..11M viz 16       D               1 2010 189 Stellar rotation periods of the Kepler Objects of Interest: a dearth of close-in planets around fast rotators. McQUILLAN A., MAZEH T. and AIGRAIN S.
2013MNRAS.436.1883W viz 16       D               1 961 136 Rotation periods, variability properties and ages for Kepler exoplanet candidate host stars. WALKOWICZ L.M. and BASRI G.S.
2013ApJ...779..188M viz 16       D               1 342 155 Spectro-thermometry of M dwarfs and their candidate planets: too hot, too cool, or just right? MANN A.W., GAIDOS E. and ANSDELL M.
2013A&A...560A...4R viz 16       D               1 24132 291 Rotation and differential rotation of active Kepler stars. REINHOLD T., REINERS A. and BASRI G.
2014ApJS..210...19B viz 16       D               1 5860 211 Planetary candidates observed by Kepler IV: planet sample from Q1-Q8 (22 months). BURKE C.J., BRYSON S.T., MULLALLY F., et al.
2014AJ....147..119C viz 16       D               1 8010 91 Contamination in the Kepler field. Identification of 685 KOIs as false positives via ephemeris matching based on Q1-Q12 data. COUGHLIN J.L., THOMPSON S.E., BRYSON S.T., et al.
2015ApJ...801....3M viz 16       D               1 3357 109 Photometric amplitude distribution of stellar rotation of KOIs–Indication for spin-orbit alignment of cool stars and high obliquity for hot stars. MAZEH T., PERETS H.B., McQUILLAN A., et al.
2015ApJS..217...16R viz 16       D               1 8625 149 Planetary candidates observed by Kepler. V. Planet sample from Q1-Q12 (36 months). ROWE J.F., COUGHLIN J.L., ANTOCI V., et al.
2015ApJ...807..170H viz 16       D               1 2117 10 Time variation of Kepler transits induced by stellar Spots–A way to distinguish between prograde and retrograde motion. II. Application to KOIs. HOLCZER T., SHPORER A., MAZEH T., et al.
2015ApJ...807...45D viz 16       D               1 2707 726 The occurrence of potentially habitable planets orbiting M dwarfs estimated from the full Kepler dataset and an empirical measurement of the detection sensitivity. DRESSING C.D. and CHARBONNEAU D.
2015ApJ...814..130M viz 16       D               1 2846 162 An increase in the mass of planetary systems around lower-mass stars. MULDERS G.D., PASCUCCI I. and APAI D.
2016MNRAS.457.1851R 96       D       C       2 95 3 Search for pulsations in M dwarfs in the Kepler short-cadence data base. RODRIGUEZ E., RODRIGUEZ-LOPEZ C., LOPEZ-GONZALEZ M.J., et al.
2016ApJ...822...86M viz 16       D               1 6130 337 False positive probabilities for all Kepler objects of interest: 1284 newly validated planets and 428 likely false positives. MORTON T.D., BRYSON S.T., COUGHLIN J.L., et al.
2016AJ....152....8K viz 16       D               1 389 203 The impact of stellar multiplicity on planetary systems. I. The ruinous influence of close binary companions. KRAUS A.L., IRELAND M.J., HUBER D., et al.
2016A&A...591A..67H 42           X         1 4 8 Predictable patterns in planetary transit timing variations and transit duration variations due to exomoons. HELLER R., HIPPKE M., PLACEK B., et al.
2016ApJS..225....9H viz 16       D               1 2132 124 Transit timing observations from Kepler. IX. Catalog of the full long-cadence data set. HOLCZER T., MAZEH T., NACHMANI G., et al.
2017AJ....153...66Z viz 16       D               1 1663 45 Robo-AO Kepler Planetary Candidate Survey. III. Adaptive optics imaging of 1629 Kepler exoplanet candidate host stars. ZIEGLER C., LAW N.M., MORTON T., et al.
2017AJ....153...71F viz 16       D               1 3575 164 The Kepler follow-up observation program. I. A catalog of companions to Kepler stars from high-resolution imaging. FURLAN E., CIARDI D.R., EVERETT M.E., et al.
2017MNRAS.465.2634A viz 16       D               1 5400 21 Transit shapes and self-organizing maps as a tool for ranking planetary candidates: application to Kepler and K2. ARMSTRONG D.J., POLLACCO D. and SANTERNE A.
2016PASP..128g4502M viz 16       D               1 305 14 Identifying false alarms in the Kepler planet candidate catalog. MULLALLY F., COUGHLIN J.L., THOMPSON S.E., et al.
2018ApJS..234....9O viz 16       D               1 436 14 A spectral approach to transit timing variations. OFIR A., XIE J.-W., JIANG C.-F., et al.
2018AJ....155..206A viz 41           X         1 183 5 Systematic search for rings around Kepler planet candidates: constraints on ring size and occurrence rate. AIZAWA M., MASUDA K., KAWAHARA H., et al.
2018AJ....156...50G 16       D               1 54 ~ The best planets to harbor detectable exomoons. GUIMARAES A. and VALIO A.
2018ApJ...866...99B viz 16       D               1 7129 233 Revised radii of Kepler stars and planet's using Gaia Data Release 2. BERGER T.A., HUBER D., GAIDOS E., et al.
2019ApJ...879...69T viz 17       D               1 222609 141 The Payne: self-consistent ab initio fitting of stellar spectra. TING Y.-S., CONROY C., RIX H.-W., et al.
2020ApJ...890...23L viz 17       D               1 4935 35 Current population statistics do not favor photoevaporation over core-powered mass loss as the dominant cause of the exoplanet radius gap. LOYD R.O.P., SHKOLNIK E.L., SCHNEIDER A.C., et al.
2020AJ....160..108B viz 17       D               1 6855 109 The Gaia-Kepler stellar properties catalog. II. Planet radius demographics as a function of stellar mass and age. BERGER T.A., HUBER D., GAIDOS E., et al.
2020AJ....160..120J viz 17       D               1 365761 238 APOGEE data and spectral analysis from SDSS Data Release 16: seven years of observations including first results from APOGEE-South. JONSSON H., HOLTZMAN J.A., ALLENDE PRIETO C., et al.
2021ApJ...909..115C viz 17       D               1 2175 13 Planets Across Space and Time (PAST). I. Characterizing the memberships of Galactic components and stellar ages: revisiting the kinematic methods and applying to planet host stars. CHEN D.-C., XIE J.-W., ZHOU J.-L., et al.
2021AJ....162...98B viz 17       D               1 2175 ~ Seeking echoes of circumstellar disks in Kepler light curves. BROMLEY B.C., LEONARD A., QUINTANILLA A., et al.
2022AJ....163..128W viz 18       D               1 1570 6 The influence of 10 unique chemical elements in shaping the distribution of Kepler planets. WILSON R.F., CANAS C.I., MAJEWSKI S.R., et al.

goto View the references in ADS