K2-42 , the SIMBAD biblio

K2-42 , the SIMBAD biblio (15 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.25CEST10:45:01


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2016ApJS..222...14V viz 16       D               1 209 177 Planetary candidates from the first year of the K2 mission. VANDERBURG A., LATHAM D.W., BUCHHAVE L.A., et al.
2016ApJS..226....7C viz 16       D               3 400 165 197 candidates and 104 validated planets in K2's first five fields. CROSSFIELD I.J.M., CIARDI D.R., PETIGURA E.A., et al.
2017MNRAS.465.2634A viz 16       D               4 5400 21 Transit shapes and self-organizing maps as a tool for ranking planetary candidates: application to Kepler and K2. ARMSTRONG D.J., POLLACCO D. and SANTERNE A.
2018AJ....155...84W 16       D               4 80 18 The K2-HERMES survey. I. Planet-candidate properties from K2 Campaigns 1-3. WITTENMYER R.A., SHARMA S., STELLO D., et al.
2019AJ....157..124K viz 17       D               2 603 7 Discovery and Vetting of Exoplanets. I. Benchmarking K2 vetting tools. KOSTOV V.B., MULLALLY S.E., QUINTANA E.V., et al.
2019AJ....158...87D viz 17       D               3 179 ~ Characterizing K2 candidate planetary systems orbiting low-mass stars. IV. Updated properties for 86 cool dwarfs observed during Campaigns 1-17. DRESSING C.D., HARDEGREE-ULLMAN K., SCHLIEDER J.E., et al.
2019ApJS..244...11K viz 17       D               1 2120 48 Detection of hundreds of new planet candidates and eclipsing binaries in K2 campaigns 0-8. KRUSE E., AGOL E., LUGER R., et al.
2019AJ....158..135R 125           X C       2 49 ~ Characterization of low-mass K2 planet hosts using near-infrared spectroscopy. RODRIGUEZ MARTINEZ R., BALLARD S., MAYO A., et al.
2020ApJ...890...23L viz 17       D               1 4935 35 Current population statistics do not favor photoevaporation over core-powered mass loss as the dominant cause of the exoplanet radius gap. LOYD R.O.P., SHKOLNIK E.L., SCHNEIDER A.C., et al.
2020AJ....159..211C viz 17       D               1 351 93 Evolution of the radius valley around low-mass stars from Kepler and K2. CLOUTIER R. and MENOU K.
2020MNRAS.496..851W viz 17       D               4 245 ~ K2-HERMES II. Planet-candidate properties from K2 Campaigns 1-13. WITTENMYER R.A., CLARK J.T., SHARMA S., et al.
2021MNRAS.506..150B viz 17       D               1 588596 276 The GALAH+ survey: Third data release. BUDER S., SHARMA S., KOS J., et al.
2021AJ....162..259Z viz 17       D               1 1094 12 Scaling K2. IV. A uniform planet sample for Campaigns 1-8 and 10-18. ZINK J.K., HARDEGREE-ULLMAN K.K., CHRISTIANSEN J.L., et al.
2022ApJS..261...26S viz 18       D               1 1893 2 Magnetic Activity and Physical Parameters of Exoplanet Host Stars Based on LAMOST DR7, TESS, Kepler, and K2 Surveys. SU T., ZHANG L.-Y., LONG L., et al.
2023AJ....165..155T 47           X         1 30 ~ The K2 and TESS Synergy. II. Revisiting 26 Systems in the TESS Primary Mission. THYGESEN E., RANSHAW J.A., RODRIGUEZ J.E., et al.

goto View the references in ADS