other query modes : |
Identifier query |
Coordinate query |
Criteria query |
Reference query |
Basic query |
Script submission |
TAP |
Output options |
Help |
ASASSN -15lh , the SIMBAD biblio (142 results) | C.D.S. - SIMBAD4 rel 1.8 - 2023.01.31CET10:55:00 |
Bibcode/DOI | Score |
in Title|Abstract| Keywords |
in a table | in teXt, Caption, ... | Nb occurence | Nb objects in ref |
Citations (from ADS) |
Title | First 3 Authors |
---|---|---|---|---|---|---|---|---|---|
2015MNRAS.454.3311M | 881 | A | S X C | 20 | 8 | 116 | The diversity of transients from magnetar birth in core collapse supernovae. | METZGER B.D., MARGALIT B., KASEN D., et al. | |
2016Sci...351..257D | 1819 | T A | X C | 43 | 12 | 102 |
ASASSN-15lh: A highly super-luminous supernova. |
DONG S., SHAPPEE B.J., PRIETO J.L., et al. | |
2016ApJ...817L...8B | 866 | T K A | D | S X C | 19 | 3 | 40 | The unusual super-luminous supernovae SN 2011kl and ASASSN-15lh. | BERSTEN M.C., BENVENUTO O.G., ORELLANA M., et al. |
2016ApJ...817..132D | 1450 | T K A | S X C | 33 | 10 | 45 |
The most luminous supernova ASASSN-15lh: signature of a newborn rapidly rotating strange quark star. |
DAI Z.G., WANG S.Q., WANG J.S., et al. | |
2016ApJ...819...51L | 245 | X C | 5 | 18 | 20 | Late time multi-wavelength observations of Swift J1644+5734: a luminous Optical/IR bump and quiescent X-ray emission. | LEVAN A.J., TANVIR N.R., BROWN G.C., et al. | ||
2016ApJ...820L..38S | 361 | A | X C | 8 | 3 | 36 | The most luminous supernovae. | SUKHBOLD T. and WOOSLEY S.E. | |
2015ATel.7642....1N | 282 | T | X | 6 | 2 | 3 |
ASAS-SN Discovery of A Probable Supernova in APMUKS(BJ) B215839.70-615403.9. |
NICHOLLS B., HOLOIEN T.W.-S., STANEK K.Z., et al. | |
2015ATel.7774....1D | 241 | T | X | 5 | 3 | 2 |
Follow-up observations of ASASSN-15lh establish it as the most luminous supernova ever discovered. |
DONG S., SHAPPEE B.J., PRIETO J.L., et al. | |
2015ATel.7776....1P | 201 | T | X | 4 | 4 | 1 |
APMUKS(BJ) B215839.70-615403.9: The massive host galaxy candidate of ASASSN-15lh. |
PRIETO J.L., SHAPPEE B.J., DONG S., et al. | |
2015ATel.7843....1M | 122 | T | X | 2 | 2 | 4 |
Optical broad-band photometry and reference image for APMUKS(BJ) B215839.70-615403.9 / ASASSN-15lh from the Dark Energy Survey. |
MELCHIOR P., DRLICA-WAGNER A., BECHTOL K., et al. | |
2016MNRAS.459L..21K | 1005 | T K A | X C F | 22 | 2 | 13 |
How much radioactive nickel does ASASSN-15lh require? |
KOZYREVA A., HIRSCHI R., BLINNIKOV S., et al. | |
2016ApJ...826...39N | 84 | X | 2 | 18 | 60 | SN 2015BN: a detailed multi-wavelength view of a nearby superluminous supernova. | NICHOLL M., BERGER E., SMARTT S.J., et al. | ||
2016ApJ...826..178G | 128 | X | 3 | 6 | 37 | Explaining the most energetic supernovae with an inefficient jet-feedback mechanism. | GILKIS A., SOKER N. and PAPISH O. | ||
2016MNRAS.460L..55M | 16 | D | 1 | 23 | 10 | Constraining the ellipticity of strongly magnetized neutron stars powering superluminous supernovae. | MORIYA T.J. and TAURIS T.M. | ||
2015ATel.8086....1B | 244 | T | X | 5 | 2 | 6 |
Ultraviolet Rebrightening of Superluminous Supernova ASASSN-15lh. |
BROWN P.J. | |
2015ATel.8089....1M | 165 | T | X | 3 | 1 | 4 |
No X-ray detection of Superluminous Supernova ASASSN-15lh by Swift during the UV re-brightening. |
MARGUTTI R. | |
2016NewA...47...88S | 89 | C | 2 | 2 | 16 | Jets launched at magnetar birth cannot be ignored. | SOKER N. | ||
2016ApJ...828....3B ![]() |
2641 | T K A | D | S X C | 63 | 15 | 22 | ASASSN-15lh: a superluminous ultraviolet rebrightening observed by Swift and Hubble. | BROWN P.J., YANG Y., COOKE J., et al. |
2016ApJ...828...94C | 2685 | T A | D | S X C | 64 | 4 | 22 | Extreme supernova models for the super-luminous transient ASASSN-15lh. | CHATZOPOULOS E., WHEELER J.C., VINKO J., et al. |
2016ApJ...829...17S | 47 | X | 1 | 7 | 48 | Type I superluminous supernovae as explosions inside non-hydrogen circumstellar envelopes. | SOROKINA E., BLINNIKOV S., NOMOTO K., et al. | ||
2015ATel.8216....1M | 244 | T | X | 5 | 2 | 6 |
Optical spectroscopy of ASASSN-15lh reveal no clear signs of interaction with an H-rich circumstellar environment. |
MILISAVLJEVIC D., JAMES D.J., MARSHALL J.L., et al. | |
2016AJ....152..102B ![]() |
81 | F | 1 | 24 | 13 | Interpreting flux from broadband photometry. | BROWN P.J., BREEVELD A., ROMING P.W.A., et al. | ||
2015ATel.8388....1K | 246 | T | X | 5 | 1 | 5 |
Radio Non-Detection of ASASSN-15lh = SN2015L. |
KOOL E.C., RYDER S.D., STOCKDALE C.J., et al. | |
2016MNRAS.463..489H | 49 | X | 1 | 1 | 8 | Gravitational waves within the magnetar model of superluminous supernovae and gamma-ray bursts. | HO W.C.G. | ||
2016ApJ...832...73C | 355 | A | S X | 8 | 5 | 30 | Magnetar-powered supernovae in two dimensions. I. Superluminous supernovae. | CHEN K.-J., WOOSLEY S.E. and SUKHBOLD T. | |
2016ApJ...833...64M | 204 | X | 5 | 7 | 7 | Supernovae powered by magnetars that transform into black holes. | MORIYA T.J., METZGER B.D. and BLINNIKOV S.I. | ||
2016ApJ...833..110I | 42 | X | 1 | 13 | 22 | Are ultra-long gamma-ray bursts caused by blue supergiant collapsars, newborn magnetars, or white dwarf tidal disruption events? | IOKA K., HOTOKEZAKA K. and PIRAN T. | ||
2017ApJ...835L...8N | 84 | X | 2 | 13 | 29 | An ultraviolet excess in the superluminous supernova Gaia16apd reveals a powerful central engine. | NICHOLL M., BERGER E., MARGUTTI R., et al. | ||
2017ApJ...836...25M ![]() |
4062 | T K A | S X C F | 95 | 9 | 36 |
X-rays from the location of the double-humped transient ASASSN-15lh. |
MARGUTTI R., METZGER B.D., CHORNOCK R., et al. | |
2017ApJ...838..149A | 1498 | D | X C | 36 | 99 | 40 | New physical insights about tidal disruption events from a comprehensive observational inventory At X-ray wavelengths. | AUCHETTL K., GUILLOCHON J. and RAMIREZ-RUIZ E. | |
2017MNRAS.466.1428G | 3872 | T K A | D | S X C | 92 | 11 | 34 |
The unexpected, long-lasting, UV rebrightening of the superluminous supernova ASASSN-15lh. |
GODOY-RIVERA D., STANEK K.Z., KOCHANEK C.S., et al. |
2017MNRAS.464.3219V | 2165 | A | S X C F | 50 | 10 | 9 | On extreme transient events from rotating black holes and their gravitational wave emission. | VAN PUTTEN M.H.P.M. and DELLA VALLE M. | |
2017ApJ...840...12Y | 41 | X | 1 | 38 | 21 | A statistical study of superluminous supernovae using the magnetar engine model and implications for their connection with gamma-ray bursts and hypernovae. | YU Y.-W., ZHU J.-P., LI S.-Z., et al. | ||
2017ApJ...840...57Y | 42 | X | 1 | 22 | 33 | Far-ultraviolet to near-infrared spectroscopy of a nearby hydrogen-poor superluminous supernova Gaia16apd. | YAN L., QUIMBY R., GAL-YAM A., et al. | ||
2017MNRAS.466.2633S | 42 | X | 1 | 13 | 17 | Supernova ejecta with a relativistic wind from a central compact object: a unified picture for extraordinary supernovae. | SUZUKI A. and MAEDA K. | ||
2017MNRAS.467.1098H ![]() |
58 | D | X | 2 | 284 | 13 | The ASAS-SN bright supernova catalogue - II. 2015. | HOLOIEN T.W.-S., BROWN J.S., STANEK K.Z., et al. | |
2017MNRAS.469.1246K | 43 | X | 1 | 13 | 26 | Gaia16apd - a link between fast and slowly declining type I superluminous supernovae. | KANGAS T., BLAGORODNOVA N., MATTILA S., et al. | ||
2017ApJ...843L..19M | 42 | X | 1 | 5 | 6 | Superluminous transients at AGN centers from interaction between black hole disk winds and broad-line region clouds. | MORIYA T.J., TANAKA M., MOROKUMA T., et al. | ||
2017ApJ...843..106B | 41 | X | 1 | 25 | 24 | PS16dtm: a tidal disruption event in a narrow-line Seyfert 1 galaxy. | BLANCHARD P.K., NICHOLL M., BERGER E., et al. | ||
2017ApJ...844...46B ![]() |
43 | X | 1 | 12 | 30 | IPTF16fnl: a faint and fast tidal disruption event in an E+A galaxy. | BLAGORODNOVA N., GEZARI S., HUNG T., et al. | ||
2017ApJ...845...85L ![]() |
1251 | K | D | S X C | 29 | 47 | 35 | Analyzing the largest spectroscopic data set of hydrogen-poor super-luminous supernovae. | LIU Y.-Q., MODJAZ M. and BIANCO F.B. |
2017MNRAS.469.4483T | 52 | X | 1 | 1 | 11 | Tidal disruptions by rotating black holes: relativistic hydrodynamics with Newtonian codes. | TEJEDA E., GAFTON E., ROSSWOG S., et al. | ||
2017PASP..129j4502K | 59 | X | 1 | 12 | 216 | The All-Sky Automated Survey for Supernovae (ASAS-SN) light curve server v1.0. | KOCHANEK C.S., SHAPPEE B.J., STANEK K.Z., et al. | ||
2017MNRAS.470.4112G | 43 | X | 1 | 5 | 12 | Understanding extreme quasar optical variability with CRTS - I. Major AGN flares. | GRAHAM M.J., DJORGOVSKI S.G., DRAKE A.J., et al. | ||
2017ApJ...848....6Y | 42 | X | 1 | 23 | 26 | Hydrogen-poor superluminous supernovae with late-time Hα emission: three events from the intermediate Palomar Transient Factory. | YAN L., LUNNAN R., PERLEY D.A., et al. | ||
2017ApJ...849...70V | 82 | X | 2 | 18 | 9 | Theoretical models of optical transients. I. A broad exploration of the duration-luminosity phase space. | VILLAR V.A., BERGER E., METZGER B.D., et al. | ||
2017ApJ...850..111N | 41 | X | 1 | 7 | ~ | Optical, Near-IR, and X-ray observations of SN 2015J and its host galaxy. | NUCITA A.A., DE PAOLIS F., SAXTON R., et al. | ||
2017MNRAS.471.4966H ![]() |
41 | X | 1 | 286 | 19 | The ASAS-SN bright supernova catalogue - III. 2016. | HOLOIEN T.W.-S., BROWN J.S., STANEK K.Z., et al. | ||
2018ApJ...852...72V ![]() |
879 | A | D | X C | 21 | 18 | 19 | On the mass and luminosity functions of tidal disruption flares: rate suppression due to black hole event horizons. | VAN VELZEN S. |
2018ApJ...852...81L ![]() |
42 | X | 1 | 32 | 24 | Hydrogen-poor superluminous supernovae from the Pan-STARRS1 Medium Deep Survey. | LUNNAN R., CHORNOCK R., BERGER E., et al. | ||
2018ApJ...853...57B | 752 | X C | 17 | 27 | 23 | Gaia17biu/SN 2017egm in NGC 3191: the closest hydrogen-poor superluminous supernova to date is in a "normal," massive, metal-rich spiral galaxy. | BOSE S., DONG S., PASTORELLO A., et al. | ||
2018A&A...609A..83I | 43 | X | 1 | 3 | 5 | Euclid: Superluminous supernovae in the Deep Survey. | INSERRA C., NICHOL R.C., SCOVACRICCHI D., et al. | ||
2018ApJ...854..175I | 125 | X C | 2 | 48 | 6 | A statistical approach to identify superluminous supernovae and probe their diversity. | INSERRA C., PRAJS S., GUTIERREZ C.P., et al. | ||
2018ApJS..234...19F | 85 | X | 2 | 4 | 5 | The impact of nuclear reaction rate uncertainties on the evolution of core-collapse supernova progenitors. | FIELDS C.E., TIMMES F.X., FARMER R., et al. | ||
2018ApJ...855...54R | 42 | X | 1 | 9 | 6 | What sets the line profiles in tidal disruption events? | ROTH N. and KASEN D. | ||
2018A&A...610A..14K ![]() |
2201 | T K A | X C | 51 | 4 | 8 |
The supermassive black hole coincident with the luminous transient ASASSN-15lh. |
KRUHLER T., FRASER M., LELOUDAS G., et al. | |
2018MNRAS.474.2419G | 48 | X | 1 | 2 | 13 | Asymmetric core collapse of rapidly rotating massive star. | GILKIS A. | ||
2018MNRAS.474.3307S | 42 | X | 1 | 17 | 7 | Spectral features of tidal disruption candidates and alternative origins for such transient flares. | SAXTON C.J., PERETS H.B. and BASKIN A. | ||
2018MNRAS.474.3857C | 1199 | T A | S X C | 26 | 2 | 9 |
Tidal disruption by extreme mass ratio binaries and application to ASASSN-15lh. |
COUGHLIN E.R. and ARMITAGE P.J. | |
2018ApJ...857...95M | 45 | X | 1 | 3 | 10 | Effects of fallback accretion on protomagnetar outflows in gamma-ray bursts and superluminous supernovae. | METZGER B.D., BENIAMINI P. and GIANNIOS D. | ||
2018A&A...611A..45R | 84 | X | 2 | 47 | 6 | Search for γ-ray emission from superluminous supernovae with the Fermi-LAT. | RENAULT-TINACCI N., KOTERA K., NERONOV A., et al. | ||
2018ApJ...859....8L ![]() |
42 | X | 1 | 5 | 1 | A candidate tidal disruption event in a quasar at z = 2.359 from abundance ratio variability. | LIU X., DITTMANN A., SHEN Y., et al. | ||
2018MNRAS.476.5312V | 209 | X | 5 | 5 | 1 | Tidal disruption of stars in a supermassive black hole binary system: the influence of orbital properties on fallback and accretion rates. | VIGNERON Q., LODATO G. and GUIDARELLI A. | ||
2018ApJ...859..123H | 1530 | T K A | X C | 35 | 2 | ~ |
Persistent X-ray emission from ASASSN-15lh: massive ejecta and Pre-SLSN dense wind? |
HUANG Y. and LI Z. | |
2017NatAs...1....2L | 41 | T | X | 4 | ~ | The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole. | LELOUDAS G., FRASER M., STONE N.C., et al. | ||
2017NatAs...1..865K | 15 | 6 | A population of highly energetic transient events in the centres of active galaxies. | KANKARE E., KOTAK R., MATTILA S., et al. | |||||
2018ApJ...862..130L | 84 | C | 2 | 22 | 4 | Gamma-ray Burst/Supernova associations: energy partition and the case of a magnetar central engine. | LU H.-J., LAN L., ZHANG B., et al. | ||
2017NewA...57...59P | 82 | C | 5 | 6 | ~ | Some new possible anticipated signals for existence of magnetic monopoles. | PENG Q.-H., LIU J.-J. and MA Z.-Q. | ||
2018ApJ...863L..24C | 44 | X | 1 | 2 | 4 | Stellar binaries incident on supermassive black hole binaries: implications for double tidal disruption events, calcium-rich transients, and hypervelocity stars. | COUGHLIN E.R., DARBHA S., KASEN D., et al. | ||
2018ApJ...864...45M ![]() |
418 | X C | 9 | 37 | 18 | Results from a systematic survey of X-ray emission from hydrogen-poor superluminous SNe. | MARGUTTI R., CHORNOCK R., METZGER B.D., et al. | ||
2018MNRAS.479.1569W | 84 | X | 2 | 3 | ~ | Double tidal disruption events with massive black hole binaries. | WU X.-J. and YUAN Y.-F. | ||
2018ApJ...865..128L | 251 | X C | 5 | 19 | 1 | On the missing energy puzzle of tidal disruption events. | LU W. and KUMAR P. | ||
2018ApJ...866...26A | 251 | X | 6 | 11 | ~ | A luminous transient event in a sample of WISE-selected variable AGNs. | ASSEF R.J., PRIETO J.L., STERN D., et al. | ||
2018ApJS..238...15H | 84 | X | 2 | 33 | 6 | Sifting for sapphires: systematic selection of tidal disruption events in iPTF. | HUNG T., GEZARI S., CENKO S.B., et al. | ||
2018MNRAS.481..307K ![]() |
125 | X C | 2 | 966 | ~ | Gaia transients in galactic nuclei. | KOSTRZEWA-RUTKOWSKA Z., JONKER P.G., HODGKIN S.T., et al. | ||
2018ApJ...868L..24L | 42 | X | 1 | 7 | ~ | Photospheric radius evolution of homologous explosions. | LIU L.-D., ZHANG B., WANG L.-J., et al. | ||
2018MNRAS.481.2407M | 777 | A | S X C F | 16 | 9 | ~ | Unveiling the engines of fast radio bursts, superluminous supernovae, and gamma-ray bursts. | MARGALIT B., METZGER B.D., BERGER E., et al. | |
2019MNRAS.483..565C | 43 | X | 1 | 9 | ~ | GRRMHD simulations of tidal disruption event accretion discs around supermassive black holes: jet formation, spectra, and detectability. | CURD B. and NARAYAN R. | ||
2019ApJ...871...15J | 553 | X C | 12 | 8 | ~ | Infrared echo and late-stage rebrightening of nuclear transient PS1-10adi: exploring the torus with tidal disruption events in active galactic nuclei. | JIANG N., WANG T., MOU G., et al. | ||
2019MNRAS.482.4057M | 43 | X | 1 | 7 | ~ | RINGO3 polarimetry of the Type I superluminous SN 2017egm. | MAUND J.R., STEELE I., JERMAK H., et al. | ||
2019MNRAS.484.1899H ![]() |
43 | X | 1 | 586 | ~ | The ASAS-SN bright supernova catalogue - IV. 2017. | HOLOIEN T.W.-S., BROWN J.S., VALLELY P.J., et al. | ||
2019ApJ...872..151M | 128 | X | 3 | 17 | ~ | Weighing black holes using tidal disruption events. | MOCKLER B., GUILLOCHON J. and RAMIREZ-RUIZ E. | ||
2019A&A...624A.143K | 85 | X | 2 | 64 | ~ | Highly luminous supernovae associated with gamma-ray bursts. I. GRB 111209A/SN 2011kl in the context of stripped-envelope and superluminous supernovae. | KANN D.A., SCHADY P., OLIVARES F.E., et al. | ||
2019MNRAS.485.4413D | 596 | X | 14 | 2 | ~ | Constraining the stellar mass function from the deficiency of tidal disruption flares in the nuclei of massive galaxies. | D'ORAZIO D.J., LOEB A. and GUILLOCHON J. | ||
2019RAA....19...63W | 43 | X | 1 | 28 | ~ | The Energy Sources of Superluminous Supernovae. | WANG S.-Q., WANG L.-J. and DAI Z.-G. | ||
2019ApJ...878...82V | 85 | C | 2 | 19 | ~ | Late-time UV observations of tidal disruption flares reveal unobscured, compact accretion disks. | VAN VELZEN S., STONE N.C., METZGER B.D., et al. | ||
2019ATel12904....1P | 43 | X | 1 | 2 | ~ | No X-rays from the position of the candidate tidal disruption flare AT2019gte–perhaps another ASASSN-15lh like event? | PASHAM D. and WEVERS T. | ||
2019MNRAS.487.2215A | 43 | X | 1 | 26 | ~ | Superluminous supernovae from the Dark Energy Survey. | ANGUS C.R., SMITH M., SULLIVAN M., et al. | ||
2019MNRAS.487.2505K | 170 | X F | 3 | 15 | ~ | Swift spectra of AT2018cow: a white dwarf tidal disruption event? | KUIN N.P.M., WU K., OATES S., et al. | ||
2019MNRAS.487.4057K | 85 | X | 2 | 15 | ~ | PS1-13cbe: the rapid transition of a Seyfert 2 to a Seyfert 1. | KATEBI R., CHORNOCK R., BERGER E., et al. | ||
2019MNRAS.487.4136W | 230 | D | X F | 5 | 39 | ~ | Black hole masses of tidal disruption event host galaxies II. | WEVERS T., STONE N.C., VAN VELZEN S., et al. | |
2019ApJ...880..120H ![]() |
851 | X C | 19 | 14 | ~ | PS18kh: a new tidal disruption event with a non-axisymmetric accretion disk. | HOLOIEN T.W.-S., HUBER M.E., SHAPPEE B.J., et al. | ||
2019MNRAS.488.4042T | 43 | X | 1 | 13 | ~ | Tidal disruption events from massive black hole binaries: predictions for ongoing and future surveys. | THORP S., CHADWICK E. and SESANA A. | ||
2019MNRAS.488.4816W | 664 | A | X C | 15 | 15 | ~ | Evidence for rapid disc formation and reprocessing in the X-ray bright tidal disruption event candidate AT 2018fyk. | WEVERS T., PASHAM D.R., VAN VELZEN S., et al. | |
2019ApJ...882..102G | 536 | A | S X C | 11 | 11 | ~ | A simple analysis of Type I superluminous supernova peak spectra: composition, expansion velocities, and dynamics. | GAL-YAM A. | |
2019MNRAS.489.1463O | 128 | X C | 2 | 21 | ~ | Optical follow-up of the tidal disruption event iPTF16fnl: new insights from X-shooter observations. | ONORI F., CANNIZZARO G., JONKER P.G., et al. | ||
2019MNRAS.489.3591P | 43 | X | 1 | 164 | ~ | Anomaly detection in the Open Supernova Catalog. | PRUZHINSKAYA M.V., MALANCHEV K.L., KORNILOV M.V., et al. | ||
2020ApJ...888L..14C | 87 | X | 2 | 1 | ~ | On post-starburst galaxies dominating tidal disruption events. | CEN R. | ||
2016ATel.9843....1D | 41 | X | 1 | 2 | ~ | Optical and UV Re-brightening of Hydrogen-rich Super-Luminous Supernova PS16dtm/SN 2016ezh. | DONG S., CHEN P., BOSE S., et al. | ||
2020ApJ...890...73B | 87 | X | 2 | 6 | ~ | The prospects of observing tidal disruption events with the Large Synoptic Survey Telescope. | BRICMAN K. and GOMBOC A. | ||
2020MNRAS.492..686L | 218 | X C F | 3 | 10 | ~ | Self-intersection of the fallback stream in tidal disruption events. | LU W. and BONNEROT C. | ||
2020AJ....159..167L ![]() |
17 | D | 1 | 639 | ~ | The AMUSING++ nearby galaxy compilation. I. Full sample characterization and galactic-scale outflow selection. | LOPEZ-COBA C., SANCHEZ S.F., ANDERSON J.P., et al. | ||
2020ApJ...894L..10H | 131 | X C | 2 | 36 | ~ | Examining a peak-luminosity/decline-rate relationship for tidal disruption events. | HINKLE J.T., HOLOIEN T.W.-S., SHAPPEE B.J., et al. | ||
2020MNRAS.493..477C | 44 | X | 1 | 9 | ~ | Extreme variability in an active galactic nucleus: Gaia16aax. | CANNIZZARO G., FRASER M., JONKER P.G., et al. | ||
2020A&A...639A.100K | 87 | X | 2 | 14 | ~ | Rapid late-time X-ray brightening of the tidal disruption event OGLE16aaa. | KAJAVA J.J.E., GIUSTINI M., SAXTON R.D., et al. | ||
2020MNRAS.497L..13M | 1332 | T A | X C F | 28 | 3 | ~ |
ASASSN-15lh: a TDE about a maximally rotating 109 M☉ black hole. |
MUMMERY A. and BALBUS S.A. | |
2020MNRAS.497.1925G | 87 | X | 2 | 12 | ~ | The Tidal Disruption Event AT 2018hyz II: Light-curve modelling of a partially disrupted star. | GOMEZ S., NICHOLL M., SHORT P., et al. | ||
2020MNRAS.497.2276P | 44 | X | 1 | 45 | ~ | Enhancement of the tidal disruption event rate in galaxies with a nuclear star cluster: from dwarfs to ellipticals. | PFISTER H., VOLONTERI M., DAI J.L., et al. | ||
2020ApJ...900..121L | 1941 | T A | S X C | 42 | 7 | ~ |
On the energy sources of the most luminous supernova ASASSN-15lh. |
LI L., DAI Z.-G., WANG S.-Q., et al. | |
2020MNRAS.498.3730M | 2159 | T A | X C | 48 | 11 | ~ |
Polarimetry of the superluminous transient ASASSN-15lh. |
MAUND J.R., LELOUDAS G., MALESANI D.B., et al. | |
2020MNRAS.499..129G | 44 | X | 1 | 38 | ~ | Photometric and spectroscopic evolution of the peculiar Type IIn SN 2012ab. | GANGOPADHYAY A., TURATTO M., BENETTI S., et al. | ||
2020ApJ...905L...5U | 540 | D | X C | 12 | 22 | ~ | Application of the wind-driven model to a sample of tidal disruption events. | UNO K. and MAEDA K. | |
2021MNRAS.501.1748S | 45 | X | 1 | 2 | ~ | The effect of impact parameter on tidal disruption events. | SPAULDING A. and CHANG P. | ||
2021ApJS..252...32J ![]() |
45 | X | 1 | 157 | ~ | Mid-infrared outbursts in nearby galaxies (MIRONG). I. Sample selection and characterization. | JIANG N., WANG T., DOU L., et al. | ||
2021ApJ...908....4V | 63 | D | X | 2 | 35 | ~ | Seventeen tidal disruption events from the first half of ZTF survey observations: entering a new era of population studies. | VAN VELZEN S., GEZARI S., HAMMERSTEIN E., et al. | |
2021ApJ...909...24K | 63 | D | X | 2 | 93 | ~ | Photospheric velocity gradients and ejecta masses of hydrogen-poor superluminous supernovae: proxies for distinguishing between fast and slow events. | KONYVES-TOTH R. and VINKO J. | |
2021MNRAS.502.1678K | 314 | X C | 6 | 51 | ~ | SN 2020ank: a bright and fast-evolving H-deficient superluminous supernova. | KUMAR A., KUMAR B., PANDEY S.B., et al. | ||
2021ApJ...910...93R | 179 | X C | 3 | 2 | ~ | Forward modeling populations of flares from tidal disruptions of stars by supermassive black holes. | ROTH N., VAN VELZEN S., CENKO S.B., et al. | ||
2021ApJ...911...31J | 941 | A | D | X C | 21 | 26 | ~ | Infrared echoes of optical tidal disruption events: ∼1% dust-covering factor or less at subparsec scale. | JIANG N., WANG T., HU X., et al. |
2021MNRAS.504.5144M | 45 | X | 1 | 29 | ~ | A maximum X-ray luminosity scale of disc-dominated tidal destruction events. | MUMMERY A. | ||
2021MNRAS.505.1629M | 45 | X | 1 | 13 | ~ | An upper observable black hole mass scale for tidal destruction events with thermal X-ray spectra. | MUMMERY A. and BALBUS S.A. | ||
2021ApJ...920...56F | 90 | C | 1 | 30 | ~ | A family tree of optical transients from narrow-line Seyfert 1 galaxies. | FREDERICK S., GEZARI S., GRAHAM M.J., et al. | ||
2021ApJ...921...20H | 45 | X | 1 | 3 | ~ | On the origin of late-time X-ray flares in UV/optically selected tidal disruption events. | HAYASAKI K. and JONKER P.G. | ||
2021ApJ...922..214L | 45 | X | 1 | 2 | ~ | A powerful e± outflow driven by a proto-strange quark star. | LI S.-Z., YU Y.-W., GAO H., et al. | ||
2022ApJ...927L..19W | 112 | D | C | 3 | 11 | ~ | Revisiting the Rates and Demographics of Tidal Disruption Events: Effects of the Disk Formation Efficiency. | WONG T.H.T., PFISTER H. and DAI L. | |
2022ApJ...928...63C | 93 | X | 2 | 5 | ~ | AT 2019avd: A Tidal Disruption Event with a Two-phase Evolution. | CHEN J.-H., DOU L.-M. and SHEN R.-F. | ||
2022ApJ...928..182Z | 187 | X | 4 | 8 | ~ | Central Black Hole Mass in the Distant Tidal Disruption Event Candidate of Swift J2058.4+0516. | ZHANG X. | ||
2022A&A...660A.119Z | 187 | X C | 3 | 17 | ~ | Discovery of late-time X-ray flare and anomalous emission line enhancement after the nuclear optical outburst in a narrow-line Seyfert 1 Galaxy. | ZHANG W.J., SHU X.W., SHENG Z.F., et al. | ||
2022ApJ...929..184S | 19 | D | 1 | 24 | ~ | The Nascent Milliquasar VT J154843.06+220812.6: Tidal Disruption Event or Extreme Accretion State Change?. | SOMALWAR J.J., RAVI V., DONG D., et al. | ||
2022MNRAS.513.4057S | 187 | X | 4 | 32 | ~ | A mid-infrared study of superluminous supernovae. | SUN L., XIAO L. and LI G. | ||
2022ApJ...930...12H | 233 | X C | 4 | 28 | ~ | The Curious Case of ASASSN-20hx: A Slowly Evolving, UV- and X-Ray-Luminous, Ambiguous Nuclear Transient. | HINKLE J.T., HOLOIEN T.W.-S., SHAPPEE B.J., et al. | ||
2022MNRAS.514..762H | 93 | X | 2 | 27 | ~ | Unveiling the nature of the unidentified gamma-ray sources 4FGL J1908.6+0915e, HESS J1907+089/HOTS J1907+091, and 3HWC J1907+085 in the sky region of the magnetar SGR 1900+14. | HNATYK B., HNATYK R., ZHDANOV V., et al. | ||
2022ApJ...933...14H | 47 | X | 1 | 35 | ~ | Bumpy Declining Light Curves Are Common in Hydrogen-poor Superluminous Supernovae. | HOSSEINZADEH G., BERGER E., METZGER B.D., et al. | ||
2022ApJ...933L..28Y | 495 | A | X | 11 | 2 | ~ | Tidal Disruption on Stellar-mass Black Holes in Active Galactic Nuclei. | YANG Y., BARTOS I., FRAGIONE G., et al. | |
2022ApJ...933..196H | 327 | X | 7 | 32 | ~ | Investigating the Nature of the Luminous Ambiguous Nuclear Transient ASASSN-17jz. | HOLOIEN T.W.-S., NEUSTADT J.M.M., VALLELY P.J., et al. | ||
2022MNRAS.515.1380S | 93 | X | 2 | 3 | ~ | Discovering vanishing objects in POSS I red images using the Virtual Observatory. | SOLANO E., VILLARROEL B. and RODRIGO C. | ||
2022A&A...664A.158R ![]() |
112 | D | X | 3 | 41 | ~ | Energetic nuclear transients in luminous and ultraluminous infrared galaxies. | REYNOLDS T.M., MATTILA S., EFSTATHIOU A., et al. | |
2022MNRAS.516..529C | 47 | X | 1 | 8 | ~ | The fall of CSS100217: a tidal disruption-induced low state in an apparently hostless active galactic nucleus. | CANNIZZARO G., LEVAN A.J., VAN VELZEN S., et al. | ||
2022MNRAS.516.1193K | 47 | X | 1 | 34 | ~ | The Zwicky Transient Facility phase I sample of hydrogen-rich superluminous supernovae without strong narrow emission lines. | KANGAS T., YAN L., SCHULZE S., et al. | ||
2022ApJ...937L..28T | 19 | D | 1 | 23 | ~ | Dynamical Unification of Tidal Disruption Events. | THOMSEN L.L., KWAN T.M., DAI L., et al. | ||
2022A&A...666A...6W | 47 | X | 1 | 14 | ~ | An elliptical accretion disk following the tidal disruption event AT 2020zso. | WEVERS T., NICHOLL M., GUOLO M., et al. | ||
2022ApJ...939L..33L | 606 | X C | 12 | 35 | ~ | The Luminosity Function of Tidal Disruption Flares for the ZTF-I Survey. | LIN Z., JIANG N., KONG X., et al. |
© Université de Strasbourg/CNRS
• Contact