ASASSN -15lh , the SIMBAD biblio

ASASSN -15lh , the SIMBAD biblio (142 results) C.D.S. - SIMBAD4 rel 1.8 - 2023.01.31CET10:55:00

Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2015MNRAS.454.3311M 881     A S   X C       20 8 116 The diversity of transients from magnetar birth in core collapse supernovae. METZGER B.D., MARGALIT B., KASEN D., et al.
2016Sci...351..257D 1819 T   A     X C       43 12 102
ASASSN-15lh: A highly super-luminous supernova.
2016ApJ...817L...8B 866 T K A D S   X C       19 3 40 The unusual super-luminous supernovae SN 2011kl and ASASSN-15lh. BERSTEN M.C., BENVENUTO O.G., ORELLANA M., et al.
2016ApJ...817..132D 1450 T K A S   X C       33 10 45 The most luminous supernova
ASASSN-15lh: signature of a newborn rapidly rotating strange quark star.
DAI Z.G., WANG S.Q., WANG J.S., et al.
2016ApJ...819...51L 245           X C       5 18 20 Late time multi-wavelength observations of Swift J1644+5734: a luminous Optical/IR bump and quiescent X-ray emission. LEVAN A.J., TANVIR N.R., BROWN G.C., et al.
2016ApJ...820L..38S 361     A     X C       8 3 36 The most luminous supernovae. SUKHBOLD T. and WOOSLEY S.E.
2015ATel.7642....1N 282 T         X         6 2 3 ASAS-SN Discovery of A Probable Supernova in
APMUKS(BJ) B215839.70-615403.9.
2015ATel.7774....1D 241 T         X         5 3 2 Follow-up observations of
ASASSN-15lh establish it as the most luminous supernova ever discovered.
2015ATel.7776....1P 201 T         X         4 4 1 APMUKS(BJ) B215839.70-615403.9: The massive host galaxy candidate of
2015ATel.7843....1M 122 T         X         2 2 4 Optical broad-band photometry and reference image for APMUKS(BJ) B215839.70-615403.9 /
ASASSN-15lh from the Dark Energy Survey.
2016MNRAS.459L..21K 1005 T K A     X C F     22 2 13 How much radioactive nickel does
ASASSN-15lh require?
2016ApJ...826...39N 84           X         2 18 60 SN 2015BN: a detailed multi-wavelength view of a nearby superluminous supernova. NICHOLL M., BERGER E., SMARTT S.J., et al.
2016ApJ...826..178G 128           X         3 6 37 Explaining the most energetic supernovae with an inefficient jet-feedback mechanism. GILKIS A., SOKER N. and PAPISH O.
2016MNRAS.460L..55M 16       D               1 23 10 Constraining the ellipticity of strongly magnetized neutron stars powering superluminous supernovae. MORIYA T.J. and TAURIS T.M.
2015ATel.8086....1B 244 T         X         5 2 6 Ultraviolet Rebrightening of Superluminous Supernova
2015ATel.8089....1M 165 T         X         3 1 4 No X-ray detection of Superluminous Supernova
ASASSN-15lh by Swift during the UV re-brightening.
2016NewA...47...88S 89             C       2 2 16 Jets launched at magnetar birth cannot be ignored. SOKER N.
2016ApJ...828....3B viz 2641 T K A D S   X C       63 15 22 ASASSN-15lh: a superluminous ultraviolet rebrightening observed by Swift and Hubble. BROWN P.J., YANG Y., COOKE J., et al.
2016ApJ...828...94C 2685 T   A D S   X C       64 4 22 Extreme supernova models for the super-luminous transient ASASSN-15lh. CHATZOPOULOS E., WHEELER J.C., VINKO J., et al.
2016ApJ...829...17S 47           X         1 7 48 Type I superluminous supernovae as explosions inside non-hydrogen circumstellar envelopes. SOROKINA E., BLINNIKOV S., NOMOTO K., et al.
2015ATel.8216....1M 244 T         X         5 2 6 Optical spectroscopy of
ASASSN-15lh reveal no clear signs of interaction with an H-rich circumstellar environment.
2016AJ....152..102B viz 81               F     1 24 13 Interpreting flux from broadband photometry. BROWN P.J., BREEVELD A., ROMING P.W.A., et al.
2015ATel.8388....1K 246 T         X         5 1 5 Radio Non-Detection of
ASASSN-15lh =
2016MNRAS.463..489H 49           X         1 1 8 Gravitational waves within the magnetar model of superluminous supernovae and gamma-ray bursts. HO W.C.G.
2016ApJ...832...73C 355     A S   X         8 5 30 Magnetar-powered supernovae in two dimensions. I. Superluminous supernovae. CHEN K.-J., WOOSLEY S.E. and SUKHBOLD T.
2016ApJ...833...64M 204           X         5 7 7 Supernovae powered by magnetars that transform into black holes. MORIYA T.J., METZGER B.D. and BLINNIKOV S.I.
2016ApJ...833..110I 42           X         1 13 22 Are ultra-long gamma-ray bursts caused by blue supergiant collapsars, newborn magnetars, or white dwarf tidal disruption events? IOKA K., HOTOKEZAKA K. and PIRAN T.
2017ApJ...835L...8N 84           X         2 13 29 An ultraviolet excess in the superluminous supernova Gaia16apd reveals a powerful central engine. NICHOLL M., BERGER E., MARGUTTI R., et al.
2017ApJ...836...25M viz 4062 T K A S   X C F     95 9 36 X-rays from the location of the double-humped transient
2017ApJ...838..149A 1498       D     X C       36 99 40 New physical insights about tidal disruption events from a comprehensive observational inventory At X-ray wavelengths. AUCHETTL K., GUILLOCHON J. and RAMIREZ-RUIZ E.
2017MNRAS.466.1428G 3872 T K A D S   X C       92 11 34 The unexpected, long-lasting, UV rebrightening of the superluminous supernova
2017MNRAS.464.3219V 2165     A S   X C F     50 10 9 On extreme transient events from rotating black holes and their gravitational wave emission. VAN PUTTEN M.H.P.M. and DELLA VALLE M.
2017ApJ...840...12Y 41           X         1 38 21 A statistical study of superluminous supernovae using the magnetar engine model and implications for their connection with gamma-ray bursts and hypernovae. YU Y.-W., ZHU J.-P., LI S.-Z., et al.
2017ApJ...840...57Y 42           X         1 22 33 Far-ultraviolet to near-infrared spectroscopy of a nearby hydrogen-poor superluminous supernova Gaia16apd. YAN L., QUIMBY R., GAL-YAM A., et al.
2017MNRAS.466.2633S 42           X         1 13 17 Supernova ejecta with a relativistic wind from a central compact object: a unified picture for extraordinary supernovae. SUZUKI A. and MAEDA K.
2017MNRAS.467.1098H viz 58       D     X         2 284 13 The ASAS-SN bright supernova catalogue - II. 2015. HOLOIEN T.W.-S., BROWN J.S., STANEK K.Z., et al.
2017MNRAS.469.1246K 43           X         1 13 26 Gaia16apd - a link between fast and slowly declining type I superluminous supernovae. KANGAS T., BLAGORODNOVA N., MATTILA S., et al.
2017ApJ...843L..19M 42           X         1 5 6 Superluminous transients at AGN centers from interaction between black hole disk winds and broad-line region clouds. MORIYA T.J., TANAKA M., MOROKUMA T., et al.
2017ApJ...843..106B 41           X         1 25 24 PS16dtm: a tidal disruption event in a narrow-line Seyfert 1 galaxy. BLANCHARD P.K., NICHOLL M., BERGER E., et al.
2017ApJ...844...46B viz 43           X         1 12 30 IPTF16fnl: a faint and fast tidal disruption event in an E+A galaxy. BLAGORODNOVA N., GEZARI S., HUNG T., et al.
2017ApJ...845...85L viz 1251   K   D S   X C       29 47 35 Analyzing the largest spectroscopic data set of hydrogen-poor super-luminous supernovae. LIU Y.-Q., MODJAZ M. and BIANCO F.B.
2017MNRAS.469.4483T 52           X         1 1 11 Tidal disruptions by rotating black holes: relativistic hydrodynamics with Newtonian codes. TEJEDA E., GAFTON E., ROSSWOG S., et al.
2017PASP..129j4502K 59           X         1 12 216 The All-Sky Automated Survey for Supernovae (ASAS-SN) light curve server v1.0. KOCHANEK C.S., SHAPPEE B.J., STANEK K.Z., et al.
2017MNRAS.470.4112G 43           X         1 5 12 Understanding extreme quasar optical variability with CRTS - I. Major AGN flares. GRAHAM M.J., DJORGOVSKI S.G., DRAKE A.J., et al.
2017ApJ...848....6Y 42           X         1 23 26 Hydrogen-poor superluminous supernovae with late-time Hα emission: three events from the intermediate Palomar Transient Factory. YAN L., LUNNAN R., PERLEY D.A., et al.
2017ApJ...849...70V 82           X         2 18 9 Theoretical models of optical transients. I. A broad exploration of the duration-luminosity phase space. VILLAR V.A., BERGER E., METZGER B.D., et al.
2017ApJ...850..111N 41           X         1 7 ~ Optical, Near-IR, and X-ray observations of SN 2015J and its host galaxy. NUCITA A.A., DE PAOLIS F., SAXTON R., et al.
2017MNRAS.471.4966H viz 41           X         1 286 19 The ASAS-SN bright supernova catalogue - III. 2016. HOLOIEN T.W.-S., BROWN J.S., STANEK K.Z., et al.
2018ApJ...852...72V viz 879     A D     X C       21 18 19 On the mass and luminosity functions of tidal disruption flares: rate suppression due to black hole event horizons. VAN VELZEN S.
2018ApJ...852...81L viz 42           X         1 32 24 Hydrogen-poor superluminous supernovae from the Pan-STARRS1 Medium Deep Survey. LUNNAN R., CHORNOCK R., BERGER E., et al.
2018ApJ...853...57B 752           X C       17 27 23 Gaia17biu/SN 2017egm in NGC 3191: the closest hydrogen-poor superluminous supernova to date is in a "normal," massive, metal-rich spiral galaxy. BOSE S., DONG S., PASTORELLO A., et al.
2018A&A...609A..83I 43           X         1 3 5 Euclid: Superluminous supernovae in the Deep Survey. INSERRA C., NICHOL R.C., SCOVACRICCHI D., et al.
2018ApJ...854..175I 125           X C       2 48 6 A statistical approach to identify superluminous supernovae and probe their diversity. INSERRA C., PRAJS S., GUTIERREZ C.P., et al.
2018ApJS..234...19F 85           X         2 4 5 The impact of nuclear reaction rate uncertainties on the evolution of core-collapse supernova progenitors. FIELDS C.E., TIMMES F.X., FARMER R., et al.
2018ApJ...855...54R 42           X         1 9 6 What sets the line profiles in tidal disruption events? ROTH N. and KASEN D.
2018A&A...610A..14K viz 2201 T K A     X C       51 4 8 The supermassive black hole coincident with the luminous transient
2018MNRAS.474.2419G 48           X         1 2 13 Asymmetric core collapse of rapidly rotating massive star. GILKIS A.
2018MNRAS.474.3307S 42           X         1 17 7 Spectral features of tidal disruption candidates and alternative origins for such transient flares. SAXTON C.J., PERETS H.B. and BASKIN A.
2018MNRAS.474.3857C 1199 T   A S   X C       26 2 9 Tidal disruption by extreme mass ratio binaries and application to
2018ApJ...857...95M 45           X         1 3 10 Effects of fallback accretion on protomagnetar outflows in gamma-ray bursts and superluminous supernovae. METZGER B.D., BENIAMINI P. and GIANNIOS D.
2018A&A...611A..45R 84           X         2 47 6 Search for γ-ray emission from superluminous supernovae with the Fermi-LAT. RENAULT-TINACCI N., KOTERA K., NERONOV A., et al.
2018ApJ...859....8L viz 42           X         1 5 1 A candidate tidal disruption event in a quasar at z = 2.359 from abundance ratio variability. LIU X., DITTMANN A., SHEN Y., et al.
2018MNRAS.476.5312V 209           X         5 5 1 Tidal disruption of stars in a supermassive black hole binary system: the influence of orbital properties on fallback and accretion rates. VIGNERON Q., LODATO G. and GUIDARELLI A.
2018ApJ...859..123H 1530 T K A     X C       35 2 ~ Persistent X-ray emission from
ASASSN-15lh: massive ejecta and Pre-SLSN dense wind?
HUANG Y. and LI Z.
2017NatAs...1....2L 41 T         X         4 ~ The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole. LELOUDAS G., FRASER M., STONE N.C., et al.
2017NatAs...1..865K 15 6 A population of highly energetic transient events in the centres of active galaxies. KANKARE E., KOTAK R., MATTILA S., et al.
2018ApJ...862..130L 84             C       2 22 4 Gamma-ray Burst/Supernova associations: energy partition and the case of a magnetar central engine. LU H.-J., LAN L., ZHANG B., et al.
2017NewA...57...59P 82             C       5 6 ~ Some new possible anticipated signals for existence of magnetic monopoles. PENG Q.-H., LIU J.-J. and MA Z.-Q.
2018ApJ...863L..24C 44           X         1 2 4 Stellar binaries incident on supermassive black hole binaries: implications for double tidal disruption events, calcium-rich transients, and hypervelocity stars. COUGHLIN E.R., DARBHA S., KASEN D., et al.
2018ApJ...864...45M viz 418           X C       9 37 18 Results from a systematic survey of X-ray emission from hydrogen-poor superluminous SNe. MARGUTTI R., CHORNOCK R., METZGER B.D., et al.
2018MNRAS.479.1569W 84           X         2 3 ~ Double tidal disruption events with massive black hole binaries. WU X.-J. and YUAN Y.-F.
2018ApJ...865..128L 251           X C       5 19 1 On the missing energy puzzle of tidal disruption events. LU W. and KUMAR P.
2018ApJ...866...26A 251           X         6 11 ~ A luminous transient event in a sample of WISE-selected variable AGNs. ASSEF R.J., PRIETO J.L., STERN D., et al.
2018ApJS..238...15H 84           X         2 33 6 Sifting for sapphires: systematic selection of tidal disruption events in iPTF. HUNG T., GEZARI S., CENKO S.B., et al.
2018MNRAS.481..307K viz 125           X C       2 966 ~ Gaia transients in galactic nuclei. KOSTRZEWA-RUTKOWSKA Z., JONKER P.G., HODGKIN S.T., et al.
2018ApJ...868L..24L 42           X         1 7 ~ Photospheric radius evolution of homologous explosions. LIU L.-D., ZHANG B., WANG L.-J., et al.
2018MNRAS.481.2407M 777     A S   X C F     16 9 ~ Unveiling the engines of fast radio bursts, superluminous supernovae, and gamma-ray bursts. MARGALIT B., METZGER B.D., BERGER E., et al.
2019MNRAS.483..565C 43           X         1 9 ~ GRRMHD simulations of tidal disruption event accretion discs around supermassive black holes: jet formation, spectra, and detectability. CURD B. and NARAYAN R.
2019ApJ...871...15J 553           X C       12 8 ~ Infrared echo and late-stage rebrightening of nuclear transient PS1-10adi: exploring the torus with tidal disruption events in active galactic nuclei. JIANG N., WANG T., MOU G., et al.
2019MNRAS.482.4057M 43           X         1 7 ~ RINGO3 polarimetry of the Type I superluminous SN 2017egm. MAUND J.R., STEELE I., JERMAK H., et al.
2019MNRAS.484.1899H viz 43           X         1 586 ~ The ASAS-SN bright supernova catalogue - IV. 2017. HOLOIEN T.W.-S., BROWN J.S., VALLELY P.J., et al.
2019ApJ...872..151M 128           X         3 17 ~ Weighing black holes using tidal disruption events. MOCKLER B., GUILLOCHON J. and RAMIREZ-RUIZ E.
2019A&A...624A.143K 85           X         2 64 ~ Highly luminous supernovae associated with gamma-ray bursts. I. GRB 111209A/SN 2011kl in the context of stripped-envelope and superluminous supernovae. KANN D.A., SCHADY P., OLIVARES F.E., et al.
2019MNRAS.485.4413D 596           X         14 2 ~ Constraining the stellar mass function from the deficiency of tidal disruption flares in the nuclei of massive galaxies. D'ORAZIO D.J., LOEB A. and GUILLOCHON J.
2019RAA....19...63W 43           X         1 28 ~ The Energy Sources of Superluminous Supernovae. WANG S.-Q., WANG L.-J. and DAI Z.-G.
2019ApJ...878...82V 85             C       2 19 ~ Late-time UV observations of tidal disruption flares reveal unobscured, compact accretion disks. VAN VELZEN S., STONE N.C., METZGER B.D., et al.
2019ATel12904....1P 43           X         1 2 ~ No X-rays from the position of the candidate tidal disruption flare AT2019gte–perhaps another ASASSN-15lh like event? PASHAM D. and WEVERS T.
2019MNRAS.487.2215A 43           X         1 26 ~ Superluminous supernovae from the Dark Energy Survey. ANGUS C.R., SMITH M., SULLIVAN M., et al.
2019MNRAS.487.2505K 170           X   F     3 15 ~ Swift spectra of AT2018cow: a white dwarf tidal disruption event? KUIN N.P.M., WU K., OATES S., et al.
2019MNRAS.487.4057K 85           X         2 15 ~ PS1-13cbe: the rapid transition of a Seyfert 2 to a Seyfert 1. KATEBI R., CHORNOCK R., BERGER E., et al.
2019MNRAS.487.4136W 230       D     X   F     5 39 ~ Black hole masses of tidal disruption event host galaxies II. WEVERS T., STONE N.C., VAN VELZEN S., et al.
2019ApJ...880..120H viz 851           X C       19 14 ~ PS18kh: a new tidal disruption event with a non-axisymmetric accretion disk. HOLOIEN T.W.-S., HUBER M.E., SHAPPEE B.J., et al.
2019MNRAS.488.4042T 43           X         1 13 ~ Tidal disruption events from massive black hole binaries: predictions for ongoing and future surveys. THORP S., CHADWICK E. and SESANA A.
2019MNRAS.488.4816W 664     A     X C       15 15 ~ Evidence for rapid disc formation and reprocessing in the X-ray bright tidal disruption event candidate AT 2018fyk. WEVERS T., PASHAM D.R., VAN VELZEN S., et al.
2019ApJ...882..102G 536     A S   X C       11 11 ~ A simple analysis of Type I superluminous supernova peak spectra: composition, expansion velocities, and dynamics. GAL-YAM A.
2019MNRAS.489.1463O 128           X C       2 21 ~ Optical follow-up of the tidal disruption event iPTF16fnl: new insights from X-shooter observations. ONORI F., CANNIZZARO G., JONKER P.G., et al.
2019MNRAS.489.3591P 43           X         1 164 ~ Anomaly detection in the Open Supernova Catalog. PRUZHINSKAYA M.V., MALANCHEV K.L., KORNILOV M.V., et al.
2020ApJ...888L..14C 87           X         2 1 ~ On post-starburst galaxies dominating tidal disruption events. CEN R.
2016ATel.9843....1D 41           X         1 2 ~ Optical and UV Re-brightening of Hydrogen-rich Super-Luminous Supernova PS16dtm/SN 2016ezh. DONG S., CHEN P., BOSE S., et al.
2020ApJ...890...73B 87           X         2 6 ~ The prospects of observing tidal disruption events with the Large Synoptic Survey Telescope. BRICMAN K. and GOMBOC A.
2020MNRAS.492..686L 218           X C F     3 10 ~ Self-intersection of the fallback stream in tidal disruption events. LU W. and BONNEROT C.
2020AJ....159..167L viz 17       D               1 639 ~ The AMUSING++ nearby galaxy compilation. I. Full sample characterization and galactic-scale outflow selection. LOPEZ-COBA C., SANCHEZ S.F., ANDERSON J.P., et al.
2020ApJ...894L..10H 131           X C       2 36 ~ Examining a peak-luminosity/decline-rate relationship for tidal disruption events. HINKLE J.T., HOLOIEN T.W.-S., SHAPPEE B.J., et al.
2020MNRAS.493..477C 44           X         1 9 ~ Extreme variability in an active galactic nucleus: Gaia16aax. CANNIZZARO G., FRASER M., JONKER P.G., et al.
2020A&A...639A.100K 87           X         2 14 ~ Rapid late-time X-ray brightening of the tidal disruption event OGLE16aaa. KAJAVA J.J.E., GIUSTINI M., SAXTON R.D., et al.
2020MNRAS.497L..13M 1332 T   A     X C F     28 3 ~
ASASSN-15lh: a TDE about a maximally rotating 109 M black hole.
2020MNRAS.497.1925G 87           X         2 12 ~ The Tidal Disruption Event AT 2018hyz II: Light-curve modelling of a partially disrupted star. GOMEZ S., NICHOLL M., SHORT P., et al.
2020MNRAS.497.2276P 44           X         1 45 ~ Enhancement of the tidal disruption event rate in galaxies with a nuclear star cluster: from dwarfs to ellipticals. PFISTER H., VOLONTERI M., DAI J.L., et al.
2020ApJ...900..121L 1941 T   A S   X C       42 7 ~ On the energy sources of the most luminous supernova
LI L., DAI Z.-G., WANG S.-Q., et al.
2020MNRAS.498.3730M 2159 T   A     X C       48 11 ~ Polarimetry of the superluminous transient
2020MNRAS.499..129G 44           X         1 38 ~ Photometric and spectroscopic evolution of the peculiar Type IIn SN 2012ab. GANGOPADHYAY A., TURATTO M., BENETTI S., et al.
2020ApJ...905L...5U 540       D     X C       12 22 ~ Application of the wind-driven model to a sample of tidal disruption events. UNO K. and MAEDA K.
2021MNRAS.501.1748S 45           X         1 2 ~ The effect of impact parameter on tidal disruption events. SPAULDING A. and CHANG P.
2021ApJS..252...32J viz 45           X         1 157 ~ Mid-infrared outbursts in nearby galaxies (MIRONG). I. Sample selection and characterization. JIANG N., WANG T., DOU L., et al.
2021ApJ...908....4V 63       D     X         2 35 ~ Seventeen tidal disruption events from the first half of ZTF survey observations: entering a new era of population studies. VAN VELZEN S., GEZARI S., HAMMERSTEIN E., et al.
2021ApJ...909...24K 63       D     X         2 93 ~ Photospheric velocity gradients and ejecta masses of hydrogen-poor superluminous supernovae: proxies for distinguishing between fast and slow events. KONYVES-TOTH R. and VINKO J.
2021MNRAS.502.1678K 314           X C       6 51 ~ SN 2020ank: a bright and fast-evolving H-deficient superluminous supernova. KUMAR A., KUMAR B., PANDEY S.B., et al.
2021ApJ...910...93R 179           X C       3 2 ~ Forward modeling populations of flares from tidal disruptions of stars by supermassive black holes. ROTH N., VAN VELZEN S., CENKO S.B., et al.
2021ApJ...911...31J 941     A D     X C       21 26 ~ Infrared echoes of optical tidal disruption events: ∼1% dust-covering factor or less at subparsec scale. JIANG N., WANG T., HU X., et al.
2021MNRAS.504.5144M 45           X         1 29 ~ A maximum X-ray luminosity scale of disc-dominated tidal destruction events. MUMMERY A.
2021MNRAS.505.1629M 45           X         1 13 ~ An upper observable black hole mass scale for tidal destruction events with thermal X-ray spectra. MUMMERY A. and BALBUS S.A.
2021ApJ...920...56F 90             C       1 30 ~ A family tree of optical transients from narrow-line Seyfert 1 galaxies. FREDERICK S., GEZARI S., GRAHAM M.J., et al.
2021ApJ...921...20H 45           X         1 3 ~ On the origin of late-time X-ray flares in UV/optically selected tidal disruption events. HAYASAKI K. and JONKER P.G.
2021ApJ...922..214L 45           X         1 2 ~ A powerful e± outflow driven by a proto-strange quark star. LI S.-Z., YU Y.-W., GAO H., et al.
2022ApJ...927L..19W 112       D       C       3 11 ~ Revisiting the Rates and Demographics of Tidal Disruption Events: Effects of the Disk Formation Efficiency. WONG T.H.T., PFISTER H. and DAI L.
2022ApJ...928...63C 93           X         2 5 ~ AT 2019avd: A Tidal Disruption Event with a Two-phase Evolution. CHEN J.-H., DOU L.-M. and SHEN R.-F.
2022ApJ...928..182Z 187           X         4 8 ~ Central Black Hole Mass in the Distant Tidal Disruption Event Candidate of Swift J2058.4+0516. ZHANG X.
2022A&A...660A.119Z 187           X C       3 17 ~ Discovery of late-time X-ray flare and anomalous emission line enhancement after the nuclear optical outburst in a narrow-line Seyfert 1 Galaxy. ZHANG W.J., SHU X.W., SHENG Z.F., et al.
2022ApJ...929..184S 19       D               1 24 ~ The Nascent Milliquasar VT J154843.06+220812.6: Tidal Disruption Event or Extreme Accretion State Change?. SOMALWAR J.J., RAVI V., DONG D., et al.
2022MNRAS.513.4057S 187           X         4 32 ~ A mid-infrared study of superluminous supernovae. SUN L., XIAO L. and LI G.
2022ApJ...930...12H 233           X C       4 28 ~ The Curious Case of ASASSN-20hx: A Slowly Evolving, UV- and X-Ray-Luminous, Ambiguous Nuclear Transient. HINKLE J.T., HOLOIEN T.W.-S., SHAPPEE B.J., et al.
2022MNRAS.514..762H 93           X         2 27 ~ Unveiling the nature of the unidentified gamma-ray sources 4FGL J1908.6+0915e, HESS J1907+089/HOTS J1907+091, and 3HWC J1907+085 in the sky region of the magnetar SGR 1900+14. HNATYK B., HNATYK R., ZHDANOV V., et al.
2022ApJ...933...14H 47           X         1 35 ~ Bumpy Declining Light Curves Are Common in Hydrogen-poor Superluminous Supernovae. HOSSEINZADEH G., BERGER E., METZGER B.D., et al.
2022ApJ...933L..28Y 495     A     X         11 2 ~ Tidal Disruption on Stellar-mass Black Holes in Active Galactic Nuclei. YANG Y., BARTOS I., FRAGIONE G., et al.
2022ApJ...933..196H 327           X         7 32 ~ Investigating the Nature of the Luminous Ambiguous Nuclear Transient ASASSN-17jz. HOLOIEN T.W.-S., NEUSTADT J.M.M., VALLELY P.J., et al.
2022MNRAS.515.1380S 93           X         2 3 ~ Discovering vanishing objects in POSS I red images using the Virtual Observatory. SOLANO E., VILLARROEL B. and RODRIGO C.
2022A&A...664A.158R viz 112       D     X         3 41 ~ Energetic nuclear transients in luminous and ultraluminous infrared galaxies. REYNOLDS T.M., MATTILA S., EFSTATHIOU A., et al.
2022MNRAS.516..529C 47           X         1 8 ~ The fall of CSS100217: a tidal disruption-induced low state in an apparently hostless active galactic nucleus. CANNIZZARO G., LEVAN A.J., VAN VELZEN S., et al.
2022MNRAS.516.1193K 47           X         1 34 ~ The Zwicky Transient Facility phase I sample of hydrogen-rich superluminous supernovae without strong narrow emission lines. KANGAS T., YAN L., SCHULZE S., et al.
2022ApJ...937L..28T 19       D               1 23 ~ Dynamical Unification of Tidal Disruption Events. THOMSEN L.L., KWAN T.M., DAI L., et al.
2022A&A...666A...6W 47           X         1 14 ~ An elliptical accretion disk following the tidal disruption event AT 2020zso. WEVERS T., NICHOLL M., GUOLO M., et al.
2022ApJ...939L..33L 606           X C       12 35 ~ The Luminosity Function of Tidal Disruption Flares for the ZTF-I Survey. LIN Z., JIANG N., KONG X., et al.

goto View the references in ADSLimited to 100


© Université de Strasbourg/CNRS

    • Contact