ASASSN -15lh , the SIMBAD biblio

ASASSN -15lh , the SIMBAD biblio (166 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.25CEST15:40:04


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2015MNRAS.454.3311M 871     A S   X C       20 8 209 The diversity of transients from magnetar birth in core collapse supernovae. METZGER B.D., MARGALIT B., KASEN D., et al.
2016Sci...351..257D 1804 T   A     X C       43 12 172
ASASSN-15lh: A highly super-luminous supernova.
DONG S., SHAPPEE B.J., PRIETO J.L., et al.
2016ApJ...817L...8B 858 T K A D S   X C       19 3 45 The unusual super-luminous supernovae SN 2011kl and ASASSN-15lh. BERSTEN M.C., BENVENUTO O.G., ORELLANA M., et al.
2016ApJ...817..132D 1434 T K A S   X C       33 10 52 The most luminous supernova
ASASSN-15lh: signature of a newborn rapidly rotating strange quark star.
DAI Z.G., WANG S.Q., WANG J.S., et al.
2016ApJ...819...51L 242           X C       5 18 25 Late time multi-wavelength observations of Swift J1644+5734: a luminous Optical/IR bump and quiescent X-ray emission. LEVAN A.J., TANVIR N.R., BROWN G.C., et al.
2016ApJ...820L..38S 357     A     X C       8 3 38 The most luminous supernovae. SUKHBOLD T. and WOOSLEY S.E.
2015ATel.7642....1N 278 T         X         6 2 3 ASAS-SN Discovery of A Probable Supernova in
APMUKS(BJ) B215839.70-615403.9.
NICHOLLS B., HOLOIEN T.W.-S., STANEK K.Z., et al.
2015ATel.7774....1D 238 T         X         5 3 2 Follow-up observations of
ASASSN-15lh establish it as the most luminous supernova ever discovered.
DONG S., SHAPPEE B.J., PRIETO J.L., et al.
2015ATel.7776....1P 199 T         X         4 4 1 APMUKS(BJ) B215839.70-615403.9: The massive host galaxy candidate of
ASASSN-15lh.
PRIETO J.L., SHAPPEE B.J., DONG S., et al.
2015ATel.7843....1M 120 T         X         2 2 4 Optical broad-band photometry and reference image for APMUKS(BJ) B215839.70-615403.9 /
ASASSN-15lh from the Dark Energy Survey.
MELCHIOR P., DRLICA-WAGNER A., BECHTOL K., et al.
2016MNRAS.459L..21K 993 T K A     X C F     22 2 13 How much radioactive nickel does
ASASSN-15lh require?
KOZYREVA A., HIRSCHI R., BLINNIKOV S., et al.
2016ApJ...826...39N 87           X         2 18 133 SN 2015BN: a detailed multi-wavelength view of a nearby superluminous supernova. NICHOLL M., BERGER E., SMARTT S.J., et al.
2016ApJ...826..178G 126           X         3 6 37 Explaining the most energetic supernovae with an inefficient jet-feedback mechanism. GILKIS A., SOKER N. and PAPISH O.
2016MNRAS.460L..55M 16       D               1 23 10 Constraining the ellipticity of strongly magnetized neutron stars powering superluminous supernovae. MORIYA T.J. and TAURIS T.M.
2015ATel.8086....1B 239 T         X         5 2 6 Ultraviolet Rebrightening of Superluminous Supernova
ASASSN-15lh.
BROWN P.J.
2015ATel.8089....1M 161 T         X         3 1 4 No X-ray detection of Superluminous Supernova
ASASSN-15lh by Swift during the UV re-brightening.
MARGUTTI R.
2016NewA...47...88S 88             C       2 2 16 Jets launched at magnetar birth cannot be ignored. SOKER N.
2016ApJ...828....3B viz 2610 T K A D S   X C       63 15 22 ASASSN-15lh: a superluminous ultraviolet rebrightening observed by Swift and Hubble. BROWN P.J., YANG Y., COOKE J., et al.
2016ApJ...828...94C 2654 T   A D S   X C       64 4 22 Extreme supernova models for the super-luminous transient ASASSN-15lh. CHATZOPOULOS E., WHEELER J.C., VINKO J., et al.
2016ApJ...829...17S 48           X         1 7 60 Type I superluminous supernovae as explosions inside non-hydrogen circumstellar envelopes. SOROKINA E., BLINNIKOV S., NOMOTO K., et al.
2015ATel.8216....1M 239 T         X         5 2 6 Optical spectroscopy of
ASASSN-15lh reveal no clear signs of interaction with an H-rich circumstellar environment.
MILISAVLJEVIC D., JAMES D.J., MARSHALL J.L., et al.
2016AJ....152..102B viz 81               F     1 24 32 Interpreting flux from broadband photometry. BROWN P.J., BREEVELD A., ROMING P.W.A., et al.
2015ATel.8388....1K 240 T         X         5 1 5 Radio Non-Detection of
ASASSN-15lh =
SN2015L.
KOOL E.C., RYDER S.D., STOCKDALE C.J., et al.
2016MNRAS.463..489H 48           X         1 1 8 Gravitational waves within the magnetar model of superluminous supernovae and gamma-ray bursts. HO W.C.G.
2016ApJ...832...73C 353     A S   X         8 5 41 Magnetar-powered supernovae in two dimensions. I. Superluminous supernovae. CHEN K.-J., WOOSLEY S.E. and SUKHBOLD T.
2016ApJ...833...64M 202           X         5 7 7 Supernovae powered by magnetars that transform into black holes. MORIYA T.J., METZGER B.D. and BLINNIKOV S.I.
2016ApJ...833..110I 42           X         1 13 29 Are ultra-long gamma-ray bursts caused by blue supergiant collapsars, newborn magnetars, or white dwarf tidal disruption events? IOKA K., HOTOKEZAKA K. and PIRAN T.
2017ApJ...835L...8N 83           X         2 13 38 An ultraviolet excess in the superluminous supernova Gaia16apd reveals a powerful central engine. NICHOLL M., BERGER E., MARGUTTI R., et al.
2017ApJ...836...25M viz 4011 T K A S   X C F     95 9 63 X-rays from the location of the double-humped transient
ASASSN-15lh.
MARGUTTI R., METZGER B.D., CHORNOCK R., et al.
2017ApJ...838..149A 1479       D     X C       36 99 187 New physical insights about tidal disruption events from a comprehensive observational inventory At X-ray wavelengths. AUCHETTL K., GUILLOCHON J. and RAMIREZ-RUIZ E.
2017MNRAS.466.1428G 3821 T K A D S   X C       92 11 38 The unexpected, long-lasting, UV rebrightening of the superluminous supernova
ASASSN-15lh.
GODOY-RIVERA D., STANEK K.Z., KOCHANEK C.S., et al.
2017MNRAS.464.3219V 2136     A S   X C F     50 10 9 On extreme transient events from rotating black holes and their gravitational wave emission. VAN PUTTEN M.H.P.M. and DELLA VALLE M.
2017ApJ...840...12Y 42           X         1 38 51 A statistical study of superluminous supernovae using the magnetar engine model and implications for their connection with gamma-ray bursts and hypernovae. YU Y.-W., ZHU J.-P., LI S.-Z., et al.
2017ApJ...840...57Y 42           X         1 22 38 Far-ultraviolet to near-infrared spectroscopy of a nearby hydrogen-poor superluminous supernova Gaia16apd. YAN L., QUIMBY R., GAL-YAM A., et al.
2017MNRAS.466.2633S 44           X         1 13 44 Supernova ejecta with a relativistic wind from a central compact object: a unified picture for extraordinary supernovae. SUZUKI A. and MAEDA K.
2017MNRAS.467.1098H viz 57       D     X         2 284 22 The ASAS-SN bright supernova catalogue - II. 2015. HOLOIEN T.W.-S., BROWN J.S., STANEK K.Z., et al.
2017MNRAS.469.1246K 43           X         1 13 36 Gaia16apd - a link between fast and slowly declining type I superluminous supernovae. KANGAS T., BLAGORODNOVA N., MATTILA S., et al.
2017ApJ...843L..19M 42           X         1 5 6 Superluminous transients at AGN centers from interaction between black hole disk winds and broad-line region clouds. MORIYA T.J., TANAKA M., MOROKUMA T., et al.
2017ApJ...843..106B 45           X         1 25 122 PS16dtm: a tidal disruption event in a narrow-line Seyfert 1 galaxy. BLANCHARD P.K., NICHOLL M., BERGER E., et al.
2017ApJ...844...46B viz 51           X         1 12 124 IPTF16fnl: a faint and fast tidal disruption event in an E+A galaxy. BLAGORODNOVA N., GEZARI S., HUNG T., et al.
2017ApJ...845...85L viz 1236   K   D S   X C       29 47 77 Analyzing the largest spectroscopic data set of hydrogen-poor super-luminous supernovae. LIU Y.-Q., MODJAZ M. and BIANCO F.B.
2017MNRAS.469.4483T 63           X         1 1 22 Tidal disruptions by rotating black holes: relativistic hydrodynamics with Newtonian codes. TEJEDA E., GAFTON E., ROSSWOG S., et al.
2017PASP..129j4502K 109           X         1 12 821 The All-Sky Automated Survey for Supernovae (ASAS-SN) light curve server v1.0. KOCHANEK C.S., SHAPPEE B.J., STANEK K.Z., et al.
2017MNRAS.470.4112G 56           X         1 5 78 Understanding extreme quasar optical variability with CRTS - I. Major AGN flares. GRAHAM M.J., DJORGOVSKI S.G., DRAKE A.J., et al.
2017ApJ...848....6Y 44           X         1 23 91 Hydrogen-poor superluminous supernovae with late-time Hα emission: three events from the intermediate Palomar Transient Factory. YAN L., LUNNAN R., PERLEY D.A., et al.
2017ApJ...849...70V 83           X         2 18 53 Theoretical models of optical transients. I. A broad exploration of the duration-luminosity phase space. VILLAR V.A., BERGER E., METZGER B.D., et al.
2017ApJ...850..111N 41           X         1 7 ~ Optical, Near-IR, and X-ray observations of SN 2015J and its host galaxy. NUCITA A.A., DE PAOLIS F., SAXTON R., et al.
2017MNRAS.471.4966H viz 41           X         1 286 34 The ASAS-SN bright supernova catalogue - III. 2016. HOLOIEN T.W.-S., BROWN J.S., STANEK K.Z., et al.
2018ApJ...852...72V viz 869     A D     X C       21 18 106 On the mass and luminosity functions of tidal disruption flares: rate suppression due to black hole event horizons. VAN VELZEN S.
2018ApJ...852...81L viz 43           X         1 32 93 Hydrogen-poor superluminous supernovae from the Pan-STARRS1 Medium Deep Survey. LUNNAN R., CHORNOCK R., BERGER E., et al.
2018ApJ...853...57B 743           X C       17 27 66 Gaia17biu/SN 2017egm in NGC 3191: the closest hydrogen-poor superluminous supernova to date is in a "normal," massive, metal-rich spiral galaxy. BOSE S., DONG S., PASTORELLO A., et al.
2018A&A...609A..83I 45           X         1 3 14 Euclid: Superluminous supernovae in the Deep Survey. INSERRA C., NICHOL R.C., SCOVACRICCHI D., et al.
2018ApJ...854..175I 123           X C       2 48 19 A statistical approach to identify superluminous supernovae and probe their diversity. INSERRA C., PRAJS S., GUTIERREZ C.P., et al.
2018ApJS..234...19F 85           X         2 4 13 The impact of nuclear reaction rate uncertainties on the evolution of core-collapse supernova progenitors. FIELDS C.E., TIMMES F.X., FARMER R., et al.
2018ApJ...855...54R 47           X         1 9 61 What sets the line profiles in tidal disruption events? ROTH N. and KASEN D.
2018A&A...610A..14K viz 2168 T K A     X C       51 4 12 The supermassive black hole coincident with the luminous transient
ASASSN-15lh.
KRUHLER T., FRASER M., LELOUDAS G., et al.
2018MNRAS.474.2419G 52           X         1 2 22 Asymmetric core collapse of rapidly rotating massive star. GILKIS A.
2018MNRAS.474.3307S 41           X         1 17 13 Spectral features of tidal disruption candidates and alternative origins for such transient flares. SAXTON C.J., PERETS H.B. and BASKIN A.
2018MNRAS.474.3857C 1184 T   A S   X C       26 2 14 Tidal disruption by extreme mass ratio binaries and application to
ASASSN-15lh.
COUGHLIN E.R. and ARMITAGE P.J.
2018ApJ...857...95M 66           X         1 3 76 Effects of fallback accretion on protomagnetar outflows in gamma-ray bursts and superluminous supernovae. METZGER B.D., BENIAMINI P. and GIANNIOS D.
2018A&A...611A..45R 82           X         2 47 13 Search for γ-ray emission from superluminous supernovae with the Fermi-LAT. RENAULT-TINACCI N., KOTERA K., NERONOV A., et al.
2018ApJ...859....8L viz 41           X         1 5 3 A candidate tidal disruption event in a quasar at z = 2.359 from abundance ratio variability. LIU X., DITTMANN A., SHEN Y., et al.
2018MNRAS.476.5312V 207           X         5 5 9 Tidal disruption of stars in a supermassive black hole binary system: the influence of orbital properties on fallback and accretion rates. VIGNERON Q., LODATO G. and GUIDARELLI A.
2018ApJ...859..123H 1506 T K A     X C       35 2 ~ Persistent X-ray emission from
ASASSN-15lh: massive ejecta and Pre-SLSN dense wind?
HUANG Y. and LI Z.
2017NatAs...1....2L 41 T         X         4 ~ The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole. LELOUDAS G., FRASER M., STONE N.C., et al.
2017NatAs...1..865K 3 15 48 A population of highly energetic transient events in the centres of active galaxies. KANKARE E., KOTAK R., MATTILA S., et al.
2018ApJ...862..130L 82             C       2 22 4 Gamma-ray Burst/Supernova associations: energy partition and the case of a magnetar central engine. LU H.-J., LAN L., ZHANG B., et al.
2017NewA...57...59P 81             C       5 6 ~ Some new possible anticipated signals for existence of magnetic monopoles. PENG Q.-H., LIU J.-J. and MA Z.-Q.
2018ApJ...863L..24C 47           X         1 2 13 Stellar binaries incident on supermassive black hole binaries: implications for double tidal disruption events, calcium-rich transients, and hypervelocity stars. COUGHLIN E.R., DARBHA S., KASEN D., et al.
2018ApJ...864...45M viz 413           X C       9 37 58 Results from a systematic survey of X-ray emission from hydrogen-poor superluminous SNe. MARGUTTI R., CHORNOCK R., METZGER B.D., et al.
2018MNRAS.479.1569W 83           X         2 3 3 Double tidal disruption events with massive black hole binaries. WU X.-J. and YUAN Y.-F.
2018ApJ...865..128L 247           X C       5 19 7 On the missing energy puzzle of tidal disruption events. LU W. and KUMAR P.
2018ApJ...866...26A 247           X         6 11 9 A luminous transient event in a sample of WISE-selected variable AGNs. ASSEF R.J., PRIETO J.L., STERN D., et al.
2018ApJS..238...15H 82           X         2 33 15 Sifting for sapphires: systematic selection of tidal disruption events in iPTF. HUNG T., GEZARI S., CENKO S.B., et al.
2018MNRAS.481..307K viz 123           X C       2 966 6 Gaia transients in galactic nuclei. KOSTRZEWA-RUTKOWSKA Z., JONKER P.G., HODGKIN S.T., et al.
2018ApJ...868L..24L 41           X         1 7 4 Photospheric radius evolution of homologous explosions. LIU L.-D., ZHANG B., WANG L.-J., et al.
2018MNRAS.481.2407M 773     A S   X C F     16 9 70 Unveiling the engines of fast radio bursts, superluminous supernovae, and gamma-ray bursts. MARGALIT B., METZGER B.D., BERGER E., et al.
2019MNRAS.483..565C 47           X         1 9 51 GRRMHD simulations of tidal disruption event accretion discs around supermassive black holes: jet formation, spectra, and detectability. CURD B. and NARAYAN R.
2019ApJ...871...15J 543           X C       12 8 1 Infrared echo and late-stage rebrightening of nuclear transient PS1-10adi: exploring the torus with tidal disruption events in active galactic nuclei. JIANG N., WANG T., MOU G., et al.
2019MNRAS.482.4057M 42           X         1 7 ~ RINGO3 polarimetry of the Type I superluminous SN 2017egm. MAUND J.R., STEELE I., JERMAK H., et al.
2019MNRAS.484.1899H viz 42           X         1 584 39 The ASAS-SN bright supernova catalogue - IV. 2017. HOLOIEN T.W.-S., BROWN J.S., VALLELY P.J., et al.
2019ApJ...872..151M 133           X         3 17 149 Weighing black holes using tidal disruption events. MOCKLER B., GUILLOCHON J. and RAMIREZ-RUIZ E.
2019A&A...624A.143K 85           X         2 64 71 Highly luminous supernovae associated with gamma-ray bursts. I. GRB 111209A/SN 2011kl in the context of stripped-envelope and superluminous supernovae. KANN D.A., SCHADY P., OLIVARES F.E., et al.
2019MNRAS.485.4413D 586           X         14 2 3 Constraining the stellar mass function from the deficiency of tidal disruption flares in the nuclei of massive galaxies. D'ORAZIO D.J., LOEB A. and GUILLOCHON J.
2019RAA....19...63W 42           X         1 28 3 The Energy Sources of Superluminous Supernovae. WANG S.-Q., WANG L.-J. and DAI Z.-G.
2019ApJ...878...82V 88             C       2 19 82 Late-time UV observations of tidal disruption flares reveal unobscured, compact accretion disks. VAN VELZEN S., STONE N.C., METZGER B.D., et al.
2019ATel12904....1P 42           X         1 2 ~ No X-rays from the position of the candidate tidal disruption flare AT2019gte–perhaps another ASASSN-15lh like event? PASHAM D. and WEVERS T.
2019MNRAS.487.2215A 44           X         1 26 67 Superluminous supernovae from the Dark Energy Survey. ANGUS C.R., SMITH M., SULLIVAN M., et al.
2019MNRAS.487.2505K 171           X   F     3 15 62 Swift spectra of AT2018cow: a white dwarf tidal disruption event? KUIN N.P.M., WU K., OATES S., et al.
2019MNRAS.487.4057K 84           X         2 15 ~ PS1-13cbe: the rapid transition of a Seyfert 2 to a Seyfert 1. KATEBI R., CHORNOCK R., BERGER E., et al.
2019MNRAS.487.4136W 227       D     X   F     5 40 71 Black hole masses of tidal disruption event host galaxies II. WEVERS T., STONE N.C., VAN VELZEN S., et al.
2019ApJ...880..120H viz 841           X C       19 14 76 PS18kh: a new tidal disruption event with a non-axisymmetric accretion disk. HOLOIEN T.W.-S., HUBER M.E., SHAPPEE B.J., et al.
2019MNRAS.488.4042T 42           X         1 13 4 Tidal disruption events from massive black hole binaries: predictions for ongoing and future surveys. THORP S., CHADWICK E. and SESANA A.
2019MNRAS.488.4816W 658     A     X C       15 15 97 Evidence for rapid disc formation and reprocessing in the X-ray bright tidal disruption event candidate AT 2018fyk. WEVERS T., PASHAM D.R., VAN VELZEN S., et al.
2019ApJ...882..102G 527     A S   X C       11 11 ~ A simple analysis of Type I superluminous supernova peak spectra: composition, expansion velocities, and dynamics. GAL-YAM A.
2019MNRAS.489.1463O 125           X C       2 21 ~ Optical follow-up of the tidal disruption event iPTF16fnl: new insights from X-shooter observations. ONORI F., CANNIZZARO G., JONKER P.G., et al.
2019MNRAS.489.3591P viz 42           X         1 164 31 Anomaly detection in the Open Supernova Catalog. PRUZHINSKAYA M.V., MALANCHEV K.L., KORNILOV M.V., et al.
2020ApJ...888L..14C 85           X         2 1 ~ On post-starburst galaxies dominating tidal disruption events. CEN R.
2016ATel.9843....1D 40           X         1 2 ~ Optical and UV Re-brightening of Hydrogen-rich Super-Luminous Supernova PS16dtm/SN 2016ezh. DONG S., CHEN P., BOSE S., et al.
2020ApJ...890...73B 91           X         2 6 40 The prospects of observing tidal disruption events with the Large Synoptic Survey Telescope. BRICMAN K. and GOMBOC A.
2020MNRAS.492..686L 222           X C F     3 10 93 Self-intersection of the fallback stream in tidal disruption events. LU W. and BONNEROT C.
2020AJ....159..167L viz 17       D               1 639 53 The AMUSING++ nearby galaxy compilation. I. Full sample characterization and galactic-scale outflow selection. LOPEZ-COBA C., SANCHEZ S.F., ANDERSON J.P., et al.
2020ApJ...894L..10H 128           X C       2 36 ~ Examining a peak-luminosity/decline-rate relationship for tidal disruption events. HINKLE J.T., HOLOIEN T.W.-S., SHAPPEE B.J., et al.
2020MNRAS.493..477C 43           X         1 9 ~ Extreme variability in an active galactic nucleus: Gaia16aax. CANNIZZARO G., FRASER M., JONKER P.G., et al.
2020A&A...639A.100K 85           X         2 14 ~ Rapid late-time X-ray brightening of the tidal disruption event OGLE16aaa. KAJAVA J.J.E., GIUSTINI M., SAXTON R.D., et al.
2020MNRAS.497L..13M 1303 T   A     X C F     28 3 ~
ASASSN-15lh: a TDE about a maximally rotating 109 M black hole.
MUMMERY A. and BALBUS S.A.
2020MNRAS.497.1925G 87           X         2 12 26 The Tidal Disruption Event AT 2018hyz II: Light-curve modelling of a partially disrupted star. GOMEZ S., NICHOLL M., SHORT P., et al.
2020MNRAS.497.2276P 43           X         1 45 ~ Enhancement of the tidal disruption event rate in galaxies with a nuclear star cluster: from dwarfs to ellipticals. PFISTER H., VOLONTERI M., DAI J.L., et al.
2020ApJ...900..121L 1898 T   A S   X C       42 7 ~ On the energy sources of the most luminous supernova
ASASSN-15lh.
LI L., DAI Z.-G., WANG S.-Q., et al.
2020MNRAS.498.3730M 2111 T   A     X C       48 11 ~ Polarimetry of the superluminous transient
ASASSN-15lh.
MAUND J.R., LELOUDAS G., MALESANI D.B., et al.
2020MNRAS.499..129G 43           X         1 38 ~ Photometric and spectroscopic evolution of the peculiar Type IIn SN 2012ab. GANGOPADHYAY A., TURATTO M., BENETTI S., et al.
2020ApJ...905L...5U 528       D     X C       12 22 ~ Application of the wind-driven model to a sample of tidal disruption events. UNO K. and MAEDA K.
2021MNRAS.501.1748S 44           X         1 2 ~ The effect of impact parameter on tidal disruption events. SPAULDING A. and CHANG P.
2021ApJS..252...32J viz 44           X         1 157 26 Mid-infrared outbursts in nearby galaxies (MIRONG). I. Sample selection and characterization. JIANG N., WANG T., DOU L., et al.
2021ApJ...908....4V 66       D     X         2 35 195 Seventeen tidal disruption events from the first half of ZTF survey observations: entering a new era of population studies. VAN VELZEN S., GEZARI S., HAMMERSTEIN E., et al.
2021ApJ...909...24K 61       D     X         2 93 ~ Photospheric velocity gradients and ejecta masses of hydrogen-poor superluminous supernovae: proxies for distinguishing between fast and slow events. KONYVES-TOTH R. and VINKO J.
2021MNRAS.502.1678K 305           X C       6 51 12 SN 2020ank: a bright and fast-evolving H-deficient superluminous supernova. KUMAR A., KUMAR B., PANDEY S.B., et al.
2021ApJ...910...93R 174           X C       3 2 ~ Forward modeling populations of flares from tidal disruptions of stars by supermassive black holes. ROTH N., VAN VELZEN S., CENKO S.B., et al.
2021ApJ...911...31J 915     A D     X C       21 26 32 Infrared echoes of optical tidal disruption events: ∼1% dust-covering factor or less at subparsec scale. JIANG N., WANG T., HU X., et al.
2021MNRAS.504.5144M 44           X         1 29 ~ A maximum X-ray luminosity scale of disc-dominated tidal destruction events. MUMMERY A.
2021MNRAS.505.1629M 44           X         1 13 ~ An upper observable black hole mass scale for tidal destruction events with thermal X-ray spectra. MUMMERY A. and BALBUS S.A.
2021ApJ...920...56F 88             C       1 30 39 A family tree of optical transients from narrow-line Seyfert 1 galaxies. FREDERICK S., GEZARI S., GRAHAM M.J., et al.
2021ApJ...921...20H 47           X         1 3 10 On the origin of late-time X-ray flares in UV/optically selected tidal disruption events. HAYASAKI K. and JONKER P.G.
2021ApJ...922..214L 44           X         1 2 ~ A powerful e± outflow driven by a proto-strange quark star. LI S.-Z., YU Y.-W., GAO H., et al.
2022ApJ...927L..19W 108       D       C       3 11 6 Revisiting the Rates and Demographics of Tidal Disruption Events: Effects of the Disk Formation Efficiency. WONG T.H.T., PFISTER H. and DAI L.
2022ApJ...928...63C 91           X         2 5 8 AT 2019avd: A Tidal Disruption Event with a Two-phase Evolution. CHEN J.-H., DOU L.-M. and SHEN R.-F.
2022ApJ...928..182Z 179           X         4 8 ~ Central Black Hole Mass in the Distant Tidal Disruption Event Candidate of Swift J2058.4+0516. ZHANG X.
2022A&A...660A.119Z 179           X C       3 17 4 Discovery of late-time X-ray flare and anomalous emission line enhancement after the nuclear optical outburst in a narrow-line Seyfert 1 Galaxy. ZHANG W.J., SHU X.W., SHENG Z.F., et al.
2022ApJ...929..184S 18       D               1 24 4 The Nascent Milliquasar VT J154843.06+220812.6: Tidal Disruption Event or Extreme Accretion State Change?. SOMALWAR J.J., RAVI V., DONG D., et al.
2022MNRAS.513.4057S 179           X         4 32 8 A mid-infrared study of superluminous supernovae. SUN L., XIAO L. and LI G.
2022ApJ...930...12H 224           X C       4 28 23 The Curious Case of ASASSN-20hx: A Slowly Evolving, UV- and X-Ray-Luminous, Ambiguous Nuclear Transient. HINKLE J.T., HOLOIEN T.W.-S., SHAPPEE B.J., et al.
2022MNRAS.514..762H 90           X         2 26 ~ Unveiling the nature of the unidentified gamma-ray sources 4FGL J1908.6+0915e, HESS J1907+089/HOTS J1907+091, and 3HWC J1907+085 in the sky region of the magnetar SGR 1900+14. HNATYK B., HNATYK R., ZHDANOV V., et al.
2022ApJ...933...14H 45           X         1 35 28 Bumpy Declining Light Curves Are Common in Hydrogen-poor Superluminous Supernovae. HOSSEINZADEH G., BERGER E., METZGER B.D., et al.
2022ApJ...933L..28Y 482     A     X         11 2 15 Tidal Disruption on Stellar-mass Black Holes in Active Galactic Nuclei. YANG Y., BARTOS I., FRAGIONE G., et al.
2022ApJ...933..196H 314           X         7 32 13 Investigating the Nature of the Luminous Ambiguous Nuclear Transient ASASSN-17jz. HOLOIEN T.W.-S., NEUSTADT J.M.M., VALLELY P.J., et al.
2022MNRAS.515.1380S 90           X         2 3 1 Discovering vanishing objects in POSS I red images using the Virtual Observatory. SOLANO E., VILLARROEL B. and RODRIGO C.
2022MNRAS.515.2778H 45           X         1 18 ~ Exploration of the origin of the 2020 X-ray outburst in OJ 287. HUANG S., HU S., YIN H., et al.
2022MNRAS.515.5198Y 45           X         1 16 5 An X-ray view of the ambiguous nuclear transient AT2019pev. YU Z., KOCHANEK C.S., MATHUR S., et al.
2022MNRAS.515.5604N 45           X         1 38 23 Systematic light-curve modelling of TDEs: statistical differences between the spectroscopic classes. NICHOLL M., LANNING D., RAMSDEN P., et al.
2022A&A...664A.158R viz 108       D     X         3 247 5 Energetic nuclear transients in luminous and ultraluminous infrared galaxies. REYNOLDS T.M., MATTILA S., EFSTATHIOU A., et al.
2022MNRAS.516L..66Z 45           X         1 16 ~ A new candidate for central tidal disruption event in SDSS J014124 + 010306 with broad Mg II line at z = 1.06. ZHANG X.-G.
2022MNRAS.516..529C 45           X         1 8 1 The fall of CSS100217: a tidal disruption-induced low state in an apparently hostless active galactic nucleus. CANNIZZARO G., LEVAN A.J., VAN VELZEN S., et al.
2022MNRAS.516.1193K 45           X         1 34 10 The Zwicky Transient Facility phase I sample of hydrogen-rich superluminous supernovae without strong narrow emission lines. KANGAS T., YAN L., SCHULZE S., et al.
2022ApJ...937L..28T 18       D               1 23 15 Dynamical Unification of Tidal Disruption Events. THOMSEN L.L., KWAN T.M., DAI L., et al.
2022A&A...666A...6W 45           X         1 14 9 An elliptical accretion disk following the tidal disruption event AT 2020zso. WEVERS T., NICHOLL M., GUOLO M., et al.
2022ApJ...939L..33L 582           X C       12 35 7 The Luminosity Function of Tidal Disruption Flares for the ZTF-I Survey. LIN Z., JIANG N., KONG X., et al.
2023A&A...669A..75L 47           X         1 28 10 Deciphering the extreme X-ray variability of the nuclear transient eRASSt J045650.3-203750 A likely repeating partial tidal disruption event. LIU Z., MALYALI A., KRUMPE M., et al.
2023ApJ...943...42C 47           X         1 55 22 The Hydrogen-poor Superluminous Supernovae from the Zwicky Transient Facility Phase I Survey. II. Light-curve Modeling and Characterization of Undulations. CHEN Z.H., YAN L., KANGAS T., et al.
2023ApJ...943L..18C 280           X C       5 16 1 Linear and Circular Polarimetry of the Optically Bright Relativistic Tidal Disruption Event AT 2022cmc. CIKOTA A., LELOUDAS G., BULLA M., et al.
2023NatAs...7...88P 48           X         1 11 13 The Birth of a Relativistic Jet Following the Disruption of a Star by a Cosmological Black Hole. PASHAM D.R., LUCCHINI M., LASKAR T., et al.
2023PASP..135c4101G 19       D               1 153 1 A Census of Archival X-Ray Spectra for Modeling Tidal Disruption Events. GOLDTOOTH A., ZABLUDOFF A.I., WEN S., et al.
2023ApJ...948...68Z 47           X         1 9 ~ Central BH Mass of Tidal Disruption Event Candidate SDSS J0159 through Long-term Optical Variabilities. ZHANG X.
2023ApJ...948L..19S 420           X C       8 22 1 Scary Barbie: An Extremely Energetic, Long-duration Tidal Disruption Event Candidate without a Detected Host Galaxy at z = 0.995. SUBRAYAN B.M., MILISAVLJEVIC D., CHORNOCK R., et al.
2023MNRAS.522.3992W 187             C F     3 13 2 Multiwavelength observations of the extraordinary accretion event AT2021lwx. WISEMAN P., WANG Y., HONIG S., et al.
2023MNRAS.522.4028M 93           X         2 7 2 Synchrotron afterglow model for AT 2022cmc: jetted tidal disruption event or engine-powered supernova? MATSUMOTO T. and METZGER B.D.
2023ApJ...949...23Z 93             C       1 17 2 SN 2017egm: A Helium-rich Superluminous Supernova with Multiple Bumps in the Light Curves. ZHU J., JIANG N., DONG S., et al.
2023MNRAS.525.1568S 47           X         1 16 ~ Delayed appearance and evolution of coronal lines in the TDE AT2019qiz. SHORT P., LAWRENCE A., NICHOLL M., et al.
2021RNAAS...5...58T 218           X         5 18 ~ Mid-infrared Detections of Type I Supernovae and Unclassified Possible Supernovae with NEOWISE. THEVENOT M., GANTIER J.M., KABATNIK M., et al.
2023ApJ...955L...6Y 47           X         1 50 ~ Tidal Disruption Event Demographics with the Zwicky Transient Facility: Volumetric Rates, Luminosity Function, and Implications for the Local Black Hole Mass Function. YAO Y., RAVI V., GEZARI S., et al.
2023A&A...677A..28P viz 19       D               1 87 ~ A characterization of ASAS-SN core-collapse supernova environments with VLT+MUSE I. Sample selection, analysis of local environments, and correlations with light curve properties. PESSI T., PRIETO J.L., ANDERSON J.P., et al.
2023ApJ...957...86H 140           X         3 20 ~ Integral Field Spectroscopy of 13 Tidal Disruption Event Hosts from the Zwicky Transient Facility Survey. HAMMERSTEIN E., CENKO S.B., GEZARI S., et al.
2023MNRAS.526.1822K 93           X         2 31 ~ Reduction of supernova light curves by vector Gaussian processes. KORNILOV M.V., SEMENIKHIN T.A. and PRUZHINSKAYA M.V.
2023PASP..135j5002H 47           X         1 78 ~ Rubin Observatory LSST Transients and Variable Stars Roadmap. HAMBLETON K.M., BIANCO F.B., STREET R., et al.
2024MNRAS.527.1865H 100           X         2 2 ~ Tidal disruption rate suppression by the event horizon of spinning black holes. HUANG H.-T. and LU W.
2024ApJ...961..149X 100           X         2 5 ~ “Tidal Peeling Events”: Low-eccentricity Tidal Disruption of a Star by a Stellar-mass Black Hole. XIN C., HAIMAN Z., PERNA R., et al.
2024ApJ...961..211M 200           X         4 7 ~ A New Population of Mid-infrared-selected Tidal Disruption Events: Implications for Tidal Disruption Event Rates and Host Galaxy Properties. MASTERSON M., DE K., PANAGIOTOU C., et al.

goto View the references in ADSLimited to 100