[VV2006] J043814.8-122314 , the SIMBAD biblio

[VV2006] J043814.8-122314 , the SIMBAD biblio (222 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.23CEST20:11:03


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2002A&A...395...17W 112 T K                 10 70
HE 0435-1223: A wide separation quadruple QSO and gravitational lens.
WISOTZKI L., SCHECHTER P.L., BRADT H.V., et al.
2003A&A...408..455W 111 T K                 10 54 Integral-field spectrophotometry of the quadruple QSO
HE 0435-1223: Evidence for microlensing.
WISOTZKI L., BECKER T., CHRISTENSEN L., et al.
2003A&A...412..399V 72 164 A catalogue of quasars and active nuclei: 11th edition. VERON-CETTY M.-P. and VERON P.
2003ApJ...598..138K 1 23 137 Identifying lenses with small-scale structure. I. Cusp lenses. KEETON C.R., GAUDI B.S. and PETTERS A.O.
2003MNRAS.343..639O 78 85 The redshift distribution of gravitational lenses revisited: constraints on galaxy mass evolution. OFEK E.O., RIX H.-W. and MAOZ D.
2004AJ....127.2617M 31 61 WFI J2026-4536 and WFI J2033-4723: two new quadruple gravitational lenses. MORGAN N.D., CALDWELL J.A.R., SCHECHTER P.L., et al.
2004ApJ...603..531R 32 23 Spectrophotometry of planetary nebulae in the bulge of M31. ROTH M.M., BECKER T., KELZ A., et al.
2004ApJ...610...69K 3 19 196 Tests for substructure in gravitational lenses. KOCHANEK C.S. and DALAL N.
2004AN....325..135W 10 9 Integral field spectrophotometry of gravitationally lensed QSOs with PMAS. WISOTZKI L., BECKER T., CHRISTENSEN L., et al.
2004IAUS..220..103S 7 17 The dark matter content of lensing galaxies at 1.5 Re. SCHECHTER P.L. and WAMBSGANSS J.
2005AJ....129.2531M 111 T K                 31 35 The lens redshift and galaxy environment for
HE 0435-1223.
MORGAN N.D., KOCHANEK C.S., PEVUNOVA O., et al.
2005ApJ...622...72M 15 37 Testing ΛCDM with gravitational lensing constraints on small-scale structure. METCALF R.B.
2005ApJ...622..106O 26 42 Discovery of two gravitationally lensed quasars with image separations of 3" from the sloan digital sky survey. OGURI M., INADA N., HENNAWI J.F., et al.
2005ApJ...635...35K 30 61 Identifying lenses with small-scale structure. II. Fold lenses. KEETON C.R., GAUDI B.S. and PETTERS A.O.
2006A&A...450..461S 28 16 COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. IV. Models of prospective time-delay lenses. SAHA P., COURBIN F., SLUSE D., et al.
2006A&A...451..759E 45 58 COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. III. Redshift of the lensing galaxy in eight gravitationally lensed quasars. EIGENBROD A., COURBIN F., MEYLAN G., et al.
2006A&A...452...25U 23 16 Time delay of SBS 0909+532. ULLAN A., GOICOECHEA L.J., ZHELEZNYAK A.P., et al.
2006A&A...455..773V viz 108224 628 A catalogue of quasars and active nuclei: 12th edition. VERON-CETTY M.-P. and VERON P.
2006AJ....132..999O viz 3 21 141 The Sloan Digital Sky Survey Quasar Lens Search. I. Candidate selection algorithm. OGURI M., INADA N., PINDOR B., et al.
2006ApJ...640...47K 114 T K                 26 144 The time delays of gravitational lens
HE 0435-1223: an early-type galaxy with a rising rotation curve.
KOCHANEK C.S., MORGAN N.D., FALCO E.E., et al.
2006ApJ...641...70O 37   K                 27 27 Spectroscopic redshifts for seven lens galaxies. OFEK E.O., MAOZ D., RIX H.-W., et al.
2006ApJ...642...22Y 37   K                 30 33 Halo structures of gravitational lens galaxies. YOO J., KOCHANEK C.S., FALCO E.E., et al.
2006ApJ...649..616P 3 60 362 Probing the coevolution of supermassive black holes and galaxies using gravitationally lensed quasar hosts. PENG C.Y., IMPEY C.D., RIX H.-W., et al.
2006MNRAS.365.1243D 22 37 Finite source effects in strong lensing: implications for the substructure mass scale. DOBLER G. and KEETON C.R.
2006MNRAS.370.1339H 2 5 22 Isophotal shapes of elliptical/lenticular galaxies from the Sloan Digital Sky Survey. HAO C.N., MAO S., DENG Z.G., et al.
2006NewAR..49..573R 8 0 PSF-fitting techniques for crowded field 3D spectroscopy. ROTH M.M.
2006NewAR..50..252R 6 0 The Euro3D research training network. ROTH M.M.
2006ApJ...650L..17S 1 24 51 The Hubble time inferred from 10 time delay lenses. SAHA P., COLES J., MACCIO A.V., et al.
2006A&A...460..647D         O           21 16 A simple analysis of halo density profiles using gravitational lensing time delays. DOBKE B.M. and KING L.J.
2007ApJ...660....1O 1 46 156 Gravitational lens time delays: a statistical assessment of lens model dependences and implications for the global Hubble constant. OGURI M.
2007ApJ...662...62F viz 2 8 32 A time delay for the cluster-lensed quasar SDSS J1004+4112. FOHLMEISTER J., KOCHANEK C.S., FALCO E.E., et al.
2007AJ....134..668A 46 39 The gravitational lens-galaxy group connection. II. Groups associated with B2319+051 and B1600+434. AUGER M.W., FASSNACHT C.D., ABRAHAMSE A.L., et al.
2008ApJ...674...75L 75           X         2 2 3 Strong-lensing time delay: a new way of measuring cosmic shear. LIEU R.
2008AJ....135..374B 38           X         1 11 11 HE 1113-0641: the smallest-separation quadruple lens identified by a ground-based optical telescope. BLACKBURNE J.A., WISOTZKI L. and SCHECHTER P.L.
2008A&A...480..647E 38           X         1 24 32 Microlensing variability in the gravitationally lensed quasar. QSO 2237+0305 = the Einstein Cross. I. Spectrophotometric monitoring with the VLT. EIGENBROD A., COURBIN F., SLUSE D., et al.
2008A&A...485..403O 90       D     X         3 67 13 Extinction properties of lensing galaxies. OESTMAN L., GOOBAR A. and MOERTSELL E.
2008ApJ...685..725W 15       D               2 33 9 Lensed image angles: new statistical evidence for substructure. WILLIAMS L.L.R., FOLEY P., FARNSWORTH D., et al.
2009ApJ...699.1578M 76           X         2 29 37 Detection of a companion lens galaxy using the mid-infrared flux ratios of the gravitationally lensed quasar H1413+117. MacLEOD C.L., KOCHANEK C.S. and AGOL E.
2009RMxAC..35..195F 76             C       1 39 0 Cosmology with gravitational lenses. FALCO E.E.
2009ApJ...706.1451M 91       D         F     2 70 117 Microlensing-based estimate of the mass fraction in compact objects in lens galaxies. MEDIAVILLA E., MUNOZ J.A., FALCO E., et al.
2010ApJ...709..552C 931       D     X   F     24 105 10 Identifying anomalies in gravitational lens time delays. CONGDON A.B., KEETON C.R. and NORDGREN C.E.
2010ApJ...711..246F 39           X         1 15 47 Improved constraints on the gravitational lens Q0957+561. II. Strong lensing. FADELY R., KEETON C.R., NAKAJIMA R., et al.
2010ApJ...712.1129M 64       D     X         2 12 270 The quasar accretion disk size-black hole mass relation. MORGAN C.W., KOCHANEK C.S., MORGAN N.D., et al.
2010ApJ...712.1378P 169       D     X   F     4 20 42 The Hubble constant inferred from 18 time-delay lenses. PARAFICZ D. and HJORTH J.
2010ApJ...716.1579L 15       D               2 49 34 Cosmic evolution of virial and stellar mass in massive early-type galaxies. LAGATTUTA D.J., FASSNACHT C.D., AUGER M.W., et al.
2010ApJ...718.1079B 449     A S   X C F     9 1 14 The effect of a time-varying accretion disk size on quasar microlensing light curves. BLACKBURNE J.A. and KOCHANEK C.S.
2010A&A...518A..10V viz 15       D               2 168913 597 A catalogue of quasars and active nuclei: 13th edition. VERON-CETTY M.-P. and VERON P.
2011ApJ...726...84W 823       D     X C       21 14 52 The effect of environment on shear in strong gravitational lenses. WONG K.C., KEETON C.R., WILLIAMS K.A., et al.
2010A&A...522A..95C 153           X         4 52 23 COSMOGRAIL: the COSmological MOnitoring of GRAvItational lenses. VIII. Deconvolution of high resolution near-IR images and simple mass models for 7 gravitationally lensed quasars. CHANTRY V., SLUSE D. and MAGAIN P.
2011AJ....141..101F 538     A D S   X C F     12 32 21 Near-infrared K and l' flux ratios in six lensed quasars. FADELY R. and KEETON C.R.
2011ApJ...728..145M 1307   K A D S   X C       33 11 34 A study of gravitational lens chromaticity using ground-based narrowband photometry. MOSQUERA A.M., MUNOZ J.A., MEDIAVILLA E., et al.
2011ApJ...729...34B 208       D     X C       5 55 170 Sizes and temperature profiles of quasar accretion disks from chromatic microlensing. BLACKBURNE J.A., POOLEY D., RAPPAPORT S., et al.
2011MNRAS.410.2167F 15       D               2 22 35 Galaxy number counts and implications for strong lensing. FASSNACHT C.D., KOOPMANS L.V.E. and WONG K.C.
2011A&A...528A..42R viz 753 T   A   O X C       18 18 13 Flux and color variations of the quadruply imaged quasar He 0435-1223. RICCI D., POELS J., ELYIV A., et al.
2011MNRAS.413..367S 39           X         1 12 30 Supernova tests of the timescape cosmology. SMALE P.R. and WILTSHIRE D.L.
2011ApJ...738...96M 54       D     X         2 90 104 The microlensing properties of a sample of 87 lensed quasars. MOSQUERA A.M. and KOCHANEK C.S.
2011BaltA..20..125H 4 4 Towards the automatic estimation of time delays of gravitational lenses. HIRV A., OLSPERT N. and PELT J.
2011A&A...536A..53C viz 1102 T   A S   X C       26 9 89 COSMOGRAIL: the COSmological MOnitoring of GRAvItational lenses. IX. Time delays, lens dynamics and baryonic fraction in He 0435-1223. COURBIN F., CHANTRY V., REVAZ Y., et al.
2012ApJ...744...90B 15       D               1 27 8 A graphics processing unit-enabled, high-resolution cosmological microlensing parameter survey. BATE N.F. and FLUKE C.J.
2012ApJ...744..111P 94       D     X         3 16 39 X-ray and optical flux ratio anomalies in quadruply lensed quasars. II. Mapping the dark matter content in elliptical galaxies. POOLEY D., RAPPAPORT S., BLACKBURNE J.A., et al.
2012MNRAS.419..936F 1494 T   A     X C       37 13 47 Substructure in the lens He 0435-1223. FADELY R. and KEETON C.R.
2012A&A...538A..99S 170       D     X         5 72 70 COSMOGRAIL: the COSmological MOnitoring of GRAvItational lenses. X. Modeling based on high-precision astrometry of a sample of 25 lensed quasars: consequences for ellipticity, shear, and astrometric anomalies. SLUSE D., CHANTRY V., MAGAIN P., et al.
2012MNRAS.420.2944W 93       D         F     2 41 5 The fundamental surface of quad lenses. WOLDESENBET A.G. and WILLIAMS L.L.R.
2012ApJ...751..106J 93       D     X         3 24 43 A robust determination of the size of quasar accretion disks using gravitational microlensing. JIMENEZ-VICENTE J., MEDIAVILLA E., MUNOZ J.A., et al.
2012ApJ...755...24C 1858   K A D     X C       48 13 39 X-ray monitoring of gravitational lenses with Chandra. CHEN B., DAI X., KOCHANEK C.S., et al.
2012ApJ...755...31C viz 15       D               2 313 26 Testing the dark energy with gravitational lensing statistics. CAO S., COVONE G. and ZHU Z.-H.
2012ApJ...756...52M viz 161           X         4 8 97 Further evidence that quasar X-ray emitting regions are compact: X-ray and optical microlensing in the lensed quasar Q J0158-4325. MORGAN C.W., HAINLINE L.J., CHEN B., et al.
2012A&A...544A..62S viz 790       D     X C       20 47 107 Microlensing of the broad line region in 17 lensed quasars. SLUSE D., HUTSEMEKERS D., COURBIN F., et al.
2012MNRAS.427.1867A 170       D       C F     8 21 10 Microlensing evidence for super-Eddington disc accretion in quasars. ABOLMASOV P. and SHAKURA N.I.
2013ApJ...764..160G 16       D               4 53 44 Microlensing of quasar broad emission lines: constraints on broad line region size. GUERRAS E., MEDIAVILLA E., JIMENEZ-VICENTE J., et al.
2013ApJ...764..186F 40           X         1 10 21 A two-year time delay for the lensed quasar SDSS J1029+2623. FOHLMEISTER J., KOCHANEK C.S., FALCO E.E., et al.
2013A&A...549A..71K 42         O X         1 14 108 Resolving stellar populations with crowded field 3D spectroscopy. KAMANN S., WISOTZKI L. and ROTH M.M.
2013A&A...551A.104R viz 140     A   O X         4 9 5 Flux and color variations of the doubly imaged quasar UM 673. RICCI D., ELYIV A., FINET F., et al.
2013ApJ...769L...7R 18       D               1 28 113 On the size and location of the X-ray emitting coronae around black holes. REIS R.C. and MILLER J.M.
2013ApJ...769...53M 83           X   F     1 12 130 The structure of the X-ray and optical emitting regions of the lensed quasar Q 2237+0305. MOSQUERA A.M., KOCHANEK C.S., CHEN B., et al.
2013PASA...30....4F viz 16       D               1 447 4 Optical Corrections to the Veron-Cetty and Veron Quasar Catalogue. FLESCH E.
2013A&A...553A.120T 481           X C       11 3 79 COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. XI. Techniques for time delay measurement in presence of microlensing. TEWES M., COURBIN F. and MEYLAN G.
2013A&A...553A.121E viz 40           X         1 12 36 COSMOGRAIL: the COSmological MOnitoring. of GRAvItational Lenses. XII. Time delays of the doubly lensed quasars SDSS J1206+4332 and HS 2209+1914. EULAERS E., TEWES M., MAGAIN P., et al.
2013ApJ...773...35M 42           X         1 6 36 Detection of substructure in the gravitationally lensed quasar MG0414+0534 using mid-infrared and radio VLBI observations. MacLEOD C.L., JONES R., AGOL E., et al.
2013MNRAS.434.3305E 39           X         1 8 6 Search for gravitational lens candidates in the XMM-LSS/CFHTLS common field. ELYIV A., MELNYK O., FINET F., et al.
2013A&A...556A..22T viz 45           X         1 11 135 COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. XIII. Time delays and 9-yr optical monitoring of the lensed quasar RX J1131-1231. TEWES M., COURBIN F., MEYLAN G., et al.
2013ApJ...778..123G 16       D               6 41 9 Microlensing of quasar ultraviolet iron emission. GUERRAS E., MEDIAVILLA E., JIMENEZ-VICENTE J., et al.
2013A&A...559A..37S 88           X         2 8 161 Mass-sheet degeneracy, power-law models and external convergence: Impact on the determination of the Hubble constant from gravitational lensing. SCHNEIDER P. and SLUSE D.
2014MNRAS.437..600S 16       D               2 40 30 Hubble constant and dark energy inferred from free-form determined time delay distances. SERENO M. and PARAFICZ D.
2014MNRAS.438.1435C 338     A     X C       8 11 17 Spatially resolved velocity maps of halo gas around two intermediate-redshift galaxies. CHEN H.-W., GAUTHIER J.-R., SHARON K., et al.
2014ApJ...783...47J 449       D     X C       11 26 57 The average size and temperature profile of quasar accretion disks. JIMENEZ-VICENTE J., MEDIAVILLA E., KOCHANEK C.S., et al.
2014MNRAS.439.2494O 16       D               1 162 95 The stellar and dark matter distributions in elliptical galaxies from the ensemble of strong gravitational lenses. OGURI M., RUSU C.E. and FALCO E.E.
2014A&A...565L..11B 577 T K A S   X C       12 2 14 Microlensing of the broad-line region in the quadruply imaged quasar HE 0435-1223. BRAIBANT L., HUTSEMEKERS D., SLUSE D., et al.
2014ApJ...789..125B viz 227 T K A     X         5 3 43 The optical, ultraviolet, and X-ray structure of the quasar He 0435-1223. BLACKBURNE J.A., KOCHANEK C.S., CHEN B., et al.
2014ApJ...793...96S 292       D     X C       7 20 78 A calibration of the stellar mass fundamental plane at z ∼ 0.5 using the micro-lensing-induced flux ratio anomalies of macro-lensed quasars. SCHECHTER P.L., POOLEY D., BLACKBURNE J.A., et al.
2014MNRAS.442.1090H 330       D     X C       8 16 6 Modelling spikes in quasar accretion disc temperature. HALL P.B., NOORDEH E.S., CHAJET L.S., et al.
2015ApJ...798...95B viz 81           X         2 6 29 The structure of HE 1104-1805 from infrared to X-ray. BLACKBURNE J.A., KOCHANEK C.S., CHEN B., et al.
2015ApJ...799...48B 16       D               1 20 5 Strongly lensed jets, time delays, and the value of H0. BARNACKA A., GELLER M.J., DELL'ANTONIO I.P., et al.
2015ApJ...799..149J 16       D               1 64 30 Dark matter mass fraction in lens galaxies: new estimates from microlensing. JIMENEZ-VICENTE J., MEDIAVILLA E., KOCHANEK C.S., et al.
2015ApJ...804...57S 40           X         1 14 5 Spatially resolving the kinematics of the ≲ 100 µas quasar broad-line region using spectroastrometry. STERN J., HENNAWI J.F. and POTT J.-U.
2015ApJ...805..161W 16       D               1 31 8 Broad iron emission from gravitationally lensed quasars observed by Chandra. WALTON D.J., REYNOLDS M.T., MILLER J.M., et al.
2015ApJ...806..251J 175       D     X C       4 74 17 Probing the dark matter radial profile in lens galaxies and the size of X-ray emitting region in quasars with microlensing. JIMENEZ-VICENTE J., MEDIAVILLA E., KOCHANEK C.S., et al.
2015ApJ...806..258M viz 43           X         1 6 44 A consistent picture emerges: a compact X-ray continuum emission region in the gravitationally lensed quasar SDSS J0924+0219. MacLEOD C.L., MORGAN C.W., MOSQUERA A., et al.
2015ApJS..219...29M viz 95       D     X         3 10653 17 A spectroscopic survey of the fields of 28 strong gravitational lenses. MOMCHEVA I.G., WILLIAMS K.A., COOL R.J., et al.
2015A&A...580A..38R 294       D     X C       7 50 19 H0 from ten well-measured time delay lenses. RATHNA KUMAR S., STALIN C.S. and PRABHU T.P.
2015MNRAS.451.4375F 18       D               1 57 231 Properties of AGN coronae in the NuSTAR era. FABIAN A.C., LOHFINK A., KARA E., et al.
2015MNRAS.454..287J 596     A D S   X C       14 45 23 Observations of radio-quiet quasars at 10-mas resolution by use of gravitational lensing. JACKSON N., TAGORE A.S., ROBERTS C., et al.
2016A&A...585A..84B viz 618       D     X C       15 7 2 Analysis of luminosity distributions and the shape parameters of strong gravitational lensing elliptical galaxies. BIERNAUX J., MAGAIN P., SLUSE D., et al.
2016A&A...585A..88B 56           X         1 3 48 COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. XV. Assessing the achievability and precision of time-delay measurements. BONVIN V., TEWES M., COURBIN F., et al.
2016ApJ...821..111K 40           X         1 5 2 On the problem of deformed spherical systems in modified newtonian dynamics. KO C.-M.
2016ApJ...824...53C 40           X         1 9 4 The wide-angle outflow of the lensed z = 1.51 AGN HS 0810+2554. CHARTAS G., CAPPI M., HAMANN F., et al.
2016MNRAS.458....2R viz 40           X         1 128 41 Subaru Telescope adaptive optics observations of gravitationally lensed quasars in the Sloan Digital Sky Survey. RUSU C.E., OGURI M., MINOWA Y., et al.
2016MNRAS.458.2423Z 1166     A D S   X C       28 18 48 Probing the cool interstellar and circumgalactic gas of three massive lensing galaxies at z = 0.4-0.7. ZAHEDY F.S., CHEN H.-W., RAUCH M., et al.
2016MNRAS.459..573A 40           X         1 8 1 Kernel regression estimates of time delays between gravitationally lensed fluxes. AL OTAIBI S., TINO P., CUEVAS-TELLO J.C., et al.
2016A&A...592A..23B 81           X         2 5 6 The different origins of high- and low-ionization broad emission lines revealed by gravitational microlensing in the Einstein cross. BRAIBANT L., HUTSEMEKERS D., SLUSE D., et al.
2016MNRAS.461.3714T 747 T K A S   X C F     15 11 3 A simple method to determine time delays in the presence of microlensing: application to HE 0435-1112 and PG 1115+080. TSVETKOVA V.S., SHULGA V.M. and BERDINA L.A.
2016MNRAS.461.4466C 136       D     X   F     3 14 2 Magnification relations of quad lenses and applications on Einstein crosses. CHU Z., LI G.L., LIN W.P., et al.
2016ApJ...832...46M 16       D               1 58 2 Peculiar transverse velocities of galaxies from quasar microlensing. Tentative estimate of the peculiar velocity dispersion at z ∼ 0.5. MEDIAVILLA E., JIMENEZ-VICENTE J., MUNOZ J.A., et al.
2016ApJ...833..194W viz 24     A               1 3427 8 A spectroscopic survey of the fields of 28 strong gravitational lenses: the group catalog. WILSON M.L., ZABLUDOFF A.I., AMMONS S.M., et al.
2016A&ARv..24...11T 65           X         1 7 176 Time delay cosmography. TREU T. and MARSHALL P.J.
2017ApJ...835..132M 894 T K A D S   X C       20 13 18 Probing the broad-line region and the accretion disk in the lensed quasars
HE 0435-1223, WFI 2033-4723, and HE 2149-2745 using gravitational microlensing.
MOTTA V., MEDIAVILLA E., ROJAS K., et al.
2017A&A...597A..49G 41           X         1 11 7 MiNDSTEp differential photometry of the gravitationally lensed quasars WFI 2033-4723 and HE 0047-1756: microlensing and a new time delay. GIANNINI E., SCHMIDT R.W., WAMBSGANSS J., et al.
2017ApJ...836..141M 90           X         2 5 47 Quantifying environmental and line-of-sight effects in models of strong gravitational lens systems. McCULLY C., KEETON C.R., WONG K.C., et al.
2017ApJ...836..206G 870       D     X C       21 7 9 Extended X-ray monitoring of gravitational lenses with Chandra and joint constraints on X-ray emission regions. GUERRAS E., DAI X., STEELE S., et al.
2017A&A...600A..79A 12 2 Apparent quasar disc sizes in the "bird's nest" paradigm. ABOLMASOV P.
2017MNRAS.465.4634D 709       D S   X C       16 9 22 H0LiCOW. VI. Testing the fidelity of lensed quasar host galaxy reconstruction. DING X., LIAO K., TREU T., et al.
2017MNRAS.465.4895W 1497 T   A     X C       35 13 147 H0LiCOW - IV. Lens mass model of
HE 0435-1223 and blind measurement of its time-delay distance for cosmology.
WONG K.C., SUYU S.H., AUGER M.W., et al.
2017MNRAS.465.4914B viz 1666 T K A D S   X C       38 9 376 H0LiCOW - V. New COSMOGRAIL time delays of
HE 0435-1223: H0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model.
BONVIN V., COURBIN F., SUYU S.H., et al.
2017MNRAS.467.4220R viz 3046 T K A D     X C F     73 273 59 H0LiCOW - III. Quantifying the effect of mass along the line of sight to the gravitational lens
HE 0435-1223 through weighted galaxy counts.
RUSU C.E., FASSNACHT C.D., SLUSE D., et al.
2017MNRAS.468.2590S 1789   K A D     X C F     42 6 261 H0LiCOW - I. H0 Lenses in COSMOGRAIL's Wellspring: program overview. SUYU S.H., BONVIN V., COURBIN F., et al.
2017A&A...604A..46B 406           X C       9 7 ~ Analysis of luminosity distributions of strong lensing galaxies: subtraction of diffuse lensed signal. BIERNAUX J., MAGAIN P. and HAURET C.
2017ApJ...847...96L 57       D     X         2 9 5 Centrally concentrated X-ray radiation from an extended accreting corona in active galactic nuclei. LIU B.F., TAAM R.E., QIAO E., et al.
2017MNRAS.470.4838S viz 1665 T K A D     X C F     39 449 37 H0LiCOW - II. Spectroscopic survey and galaxy-group identification of the strong gravitational lens system
HE 0435-1223.
SLUSE D., SONNENFELD A., RUMBAUGH N., et al.
2017MNRAS.469.3713H 43           X         1 11 27 SHARP - IV. An apparent flux-ratio anomaly resolved by the edge-on disc in B0712+472. HSUEH J.-W., OLDHAM L., SPINGOLA C., et al.
2017ApJ...850...94W viz 16       D               1 27 7 A spectroscopic survey of the fields of 28 strong gravitational lenses: implications for H0. WILSON M.L., ZABLUDOFF A.I., KEETON C.R., et al.
2017A&A...607A..32B 41           X         1 3 1 Constraining the geometry and kinematics of the quasar broad emission line region using gravitational microlensing. I. Models and simulations. BRAIBANT L., HUTSEMEKERS D., SLUSE D., et al.
2017MNRAS.471.2013A 42           X         1 22 22 Quasar lenses and galactic streams: outlier selection and Gaia multiplet detection. AGNELLO A.
2017MNRAS.471.2224N 982 T K A D     X C       23 10 78 Probing dark matter substructure in the gravitational lens

HE 0435-1223
with the WFC3 grism.
NIERENBERG A.M., TREU T., BRAMMER G., et al.
2017MNRAS.472.2906W 45           X         1 4 18 Strongly lensed gravitational waves and electromagnetic signals as powerful cosmic rulers. WEI J.-J. and WU X.-F.
2018MNRAS.473...80T 566       D     X C F     12 5 74 Microlensing makes lensed quasar time delays significantly time variable. TIE S.S. and KOCHANEK C.S.
2018MNRAS.473..210S 104       D     X         3 6 30 Improving time-delay cosmography with spatially resolved kinematics. SHAJIB A.J., TREU T. and AGNELLO A.
2017MNRAS.472...90D 1316       D S   X C F     30 146 14 H0LiCOW VII: cosmic evolution of the correlation between black hole mass and host galaxy luminosity. DING X., TREU T., SUYU S.H., et al.
2018ApJ...859...50F 1580       D     X C       38 76 5 Microlensing and intrinsic variability of the broad emission lines of lensed quasars. FIAN C., GUERRAS E., MEDIAVILLA E., et al.
2018MNRAS.476.5075S 99       D       C       3 104 40 Gravitational lensing reveals extreme dust-obscured star formation in quasar host galaxies. STACEY H.R., McKEAN J.P., ROBERTSON N.C., et al.
2018MNRAS.477.5657T 1428 T K A     X C       33 5 21 H0LiCOW VIII. A weak-lensing measurement of the external convergence in the field of the lensed quasar
HE 0435-1223.
TIHHONOVA O., COURBIN F., HARVEY D., et al.
2018A&A...616L..11K 124           X C       2 10 15 Gaia GraL: Gaia DR2 gravitational lens systems. I. New quadruply imaged quasar candidates around known quasars. KRONE-MARTINS A., DELCHAMBRE L., WERTZ O., et al.
2018A&A...616A.183B viz 45           X         1 5 21 COSMOGRAIL. XVII. Time delays for the quadruply imaged quasar PG 1115+080. BONVIN V., CHAN J.H.H., MILLON M., et al.
2018MNRAS.479.4796B 123           X C       2 32 16 HST imaging of four gravitationally lensed quasars. BATE N.F., VERNARDOS G., O'DOWD M.J., et al.
2018A&A...618A..56D viz 724     A     X C       17 20 19 Gaia GraL: Gaia DR2 gravitational lens systems. II. The known multiply imaged quasars. DUCOURANT C., WERTZ O., KRONE-MARTINS A., et al.
2018ApJ...869..132F 807 T K A     X C       18 6 3 Estimate of the accretion disk size in the gravitationally lensed quasar
HE 0435-1223 Using microlensing magnification statistics.
FIAN C., MEDIAVILLA E., JIMENEZ-VICENTE J., et al.
2019ApJ...871..113L 125           X         3 4 ~ Hubble constant from LSST strong-lens time delays with microlensing systematics. LIAO K.
2019MNRAS.483.2275L 125           X         3 16 3 Reconciling the quasar microlensing disc size problem with a wind model of active galactic nucleus. LI Y.-P., YUAN F. and DAI X.
2019A&A...622A.165D viz 144       D     X C       3 16 36 Gaia GraL: Gaia DR2 Gravitational Lens Systems. III. A systematic blind search for new lensed systems. DELCHAMBRE L., KRONE-MARTINS A., WERTZ O., et al.
2019MNRAS.484.4726B 201           X   F     3 8 273 H0LiCOW - IX. Cosmographic analysis of the doubly imaged quasar SDSS 1206+4332 and a new measurement of the Hubble constant. BIRRER S., TREU T., RUSU C.E., et al.
2019ApJ...879...35D 1981       D     X C       47 29 ~ Constraining quasar relativistic reflection regions and spins with microlensing. DAI X., STEELE S., GUERRAS E., et al.
2019MNRAS.487.4492W 42           X         1 3 ~ Generalised model-independent characterisation of strong gravitational lenses - VI. The origin of the formalism intrinsic degeneracies and their influence on H0. WAGNER J.
2019A&A...628L...7T 42           X         1 4 ~ The Hubble constant determined through an inverse distance ladder including quasar time delays and Type Ia supernovae. TAUBENBERGER S., SUYU S.H., KOMATSU E., et al.
2019ApJ...883....3L 42           X         1 6 ~ Measuring the distances to quasars at high redshifts with strong lensing. LIAO K.
2019A&A...629A..43H 443 T   A     X C       9 3 ~ Constraining the geometry and kinematics of the quasar broad emission line region using gravitational microlensing. II. Comparing models with observations in the lensed quasar HE0435-1223. HUTSEMEKERS D., BRAIBANT L., SLUSE D., et al.
2019A&A...629A..97B viz 125           X         3 11 ~ COSMOGRAIL. XVIII. time delays of the quadruply lensed quasar WFI2033-4723. BONVIN V., MILLON M., CHAN J.H.-H., et al.
2019ApJ...886L..23L 184       D     X C       4 4 ~ A model-independent determination of the Hubble constant from lensed quasars and supernovae using Gaussian process regression. LIAO K., SHAFIELOO A., KEELEY R.E., et al.
2019ApJ...886...83K 42           X         1 32 ~ Probing structure in cold gas at z <= 1 with gravitationally lensed quasar sight lines. KULKARNI V.P., CASHMAN F.H., LOPEZ S., et al.
2019MNRAS.490..613S viz 167           X         4 367 ~ H0LiCOW - X. Spectroscopic/imaging survey and galaxy-group identification around the strong gravitational lens system WFI 2033-4723. SLUSE D., RUSU C.E., FASSNACHT C.D., et al.
2019MNRAS.489.2097B 42           X         1 8 ~ Astrometric requirements for strong lensing time-delay cosmography. BIRRER S. and TREU T.
2019MNRAS.490.1743C 2703     A D S   X C F     62 5 142 A SHARP view of H0LiCOW: H0 from three time-delay gravitational lens systems with adaptive optics imaging. CHEN G.C.-F., FASSNACHT C.D., SUYU S.H., et al.
2019ApJ...887..126G viz 84           X         2 13 ~ Gravitational lens system PS J0147+4630 (Andromeda's Parachute): main lensing galaxy and optical variability of the quasar images. GOICOECHEA L.J. and SHALYAPIN V.N.
2020MNRAS.492.3047H 62       D     X         2 45 113 SHARP - VII. New constraints on the dark matter free-streaming properties and substructure abundance from gravitationally lensed quasars. HSUEH J.-W., ENZI W., VEGETTI S., et al.
2020A&A...633A.107H 315       D     X         8 9 ~ The signature of primordial black holes in the dark matter halos of galaxies. HAWKINS M.R.S.
2020MNRAS.491.6077G 447       D     X C       10 35 163 Warm dark matter chills out: constraints on the halo mass function and the free-streaming length of dark matter with eight quadruple-image strong gravitational lenses. GILMAN D., BIRRER S., NIERENBERG A., et al.
2020MNRAS.492.5314N 173           X         4 11 38 Double dark matter vision: twice the number of compact-source lenses with narrow-line lensing and the WFC3 grism. NIERENBERG A.M., GILMAN D., TREU T., et al.
2020MNRAS.493.1725K 28       D               1 6 66 Overconstrained gravitational lens models and the Hubble constant. KOCHANEK C.S.
2020ApJ...892L..27B 17       D               1 7 ~ Could quasar lensing time delays hint to a core component in halos, instead of H0 tension? BLUM K., CASTORINA E. and SIMONOVIC M.
2020ApJ...895L..29L 17       D               2 7 ~ Determining model-independent H0 and consistency tests. LIAO K., SHAFIELOO A., KEELEY R.E., et al.
2020ApJ...895...93C 17       D               1 16 ~ Quasar microlensing variability studies favor shallow accretion disk temperature profiles. CORNACHIONE M.A. and MORGAN C.W.
2020MNRAS.494.6072S 93           X         2 18 155 STRIDES: a 3.9 per cent measurement of the Hubble constant from the strong lens system DES J0408-5354. SHAJIB A.J., BIRRER S., TREU T., et al.
2020ApJ...896..111G 656       D     X C       15 19 ~ A second-order moment of microlensing variability as a novel tool to constrain source emission size or discrete lens demographics in extragalactic research. GUERRAS E., DAI X. and MEDIAVILLA E.
2020ApJ...897..127W 60       D     X         2 14 ~ Cosmology-independent estimate of the Hubble constant and spatial curvature using time-delay lenses and quasars. WEI J.-J. and MELIA F.
2020A&A...639A..57A 85           X         2 8 ~ Cosmic dissonance: are new physics or systematics behind a short sound horizon? ARENDSE N., WOJTAK R.J., AGNELLO A., et al.
2020A&A...639A.101M 78       D     X         2 7 132 TDCOSMO. I. An exploration of systematic uncertainties in the inference of H0 from time-delay cosmography. MILLON M., GALAN A., COURBIN F., et al.
2020A&A...640A.105M viz 384     A D S   X         9 44 54 COSMOGRAIL. XIX. Time delays in 18 strongly lensed quasars from 15 years of optical monitoring. MILLON M., COURBIN F., BONVIN V., et al.
2020ApJ...900..160L 60       D     X         2 6 ~ H0 reconstruction with Type Ia supernovae, baryon acoustic oscillation and gravitational lensing time delay. LYU M.-Z., HARIDASU B.S., VIEL M., et al.
2020MNRAS.498.1406T 170           X         4 6 ~ H0LiCOW - XI. A weak lensing measurement of the external convergence in the field of the lensed quasar B1608+656 using HST and Subaru deep imaging. TIHHONOVA O., COURBIN F., HARVEY D., et al.
2020MNRAS.498.1420W 750       D     X C       14 6 823 H0LiCOW - XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3σ tension between early- and late-Universe probes. WONG K.C., SUYU S.H., CHEN G.C.-F., et al.
2020MNRAS.498.1440R 134           X         3 14 84 H0LiCOW XII. Lens mass model of WFI2033 - 4723 and blind measurement of its time-delay distance and H0. RUSU C.E., WONG K.C., BONVIN V., et al.
2020MNRAS.498.2871H 43           X         1 27 ~ A 4 per cent measurement of H0 using the cumulative distribution of strong lensing time delays in doubly imaged quasars. HARVEY D.
2020MNRAS.498.3241B viz 128           X         3 5 ~ STRIDES: Spectroscopic and photometric characterization of the environment and effects of mass along the line of sight to the gravitational lenses DES J0408-5354 and WGD 2038-4008. BUCKLEY-GEER E.J., LIN H., RUSU C.E., et al.
2020MNRAS.498.6013A viz 17       D               1 197 ~ Testing dark energy models with a new sample of strong-lensing systems. AMANTE M.H., MAGANA J., MOTTA V., et al.
2020A&A...642A.194G 528       D     X C       12 9 ~ TDCOSMO. III. Dark matter substructure meets dark energy. The effects of (sub)halos on strong-lensing measurements of H0. GILMAN D., BIRRER S. and TREU T.
2020MNRAS.499.2845H 19       D               1 28 58 The KBC void and Hubble tension contradict ΛCDM on a Gpc scale - Milgromian dynamics as a possible solution. HASLBAUER M., BANIK I. and KROUPA P.
2020A&A...643A.165B 65       D     X         2 40 233 TDCOSMO. IV. Hierarchical time-delay cosmography - joint inference of the Hubble constant and galaxy density profiles. BIRRER S., SHAJIB A.J., GALAN A., et al.
2021MNRAS.501..269D 1367       D S   X C F     29 8 ~ Testing the evolution of correlations between supermassive black holes and their host galaxies using eight strongly lensed quasars. DING X., TREU T., BIRRER S., et al.
2021MNRAS.501..784D 545       D S   X   F     11 8 46 The Hubble constant from eight time-delay galaxy lenses. DENZEL P., COLES J.P., SAHA P., et al.
2021A&A...645A..78B 44           X         1 4 ~ Super-Eddington accretion in the Q2237+0305 quasar? BERDINA L.A., TSVETKOVA V.S. and SHULGA V.M.
2021MNRAS.502.2912S 106       D       C       3 4 11 Discovering strongly lensed QSOs from unresolved light curves. SHU Y., BELOKUROV V. and EVANS N.W.
2021A&A...647A.115C 44           X         1 7 ~ Measuring accretion disk sizes of lensed quasars with microlensing time delay in multi-band light curves. CHAN J.H.H., ROJAS K., MILLON M., et al.
2021MNRAS.503.2179Q 44           X         1 7 ~ Measurements of the Hubble constant and cosmic curvature with quasars: ultracompact radio structure and strong gravitational lensing. QI J.-Z., ZHAO J.-W., CAO S., et al.
2021MNRAS.504.1340G 61       D     X         2 47 ~ Galaxy-lens determination of H0: the effect of the ellipse + shear modelling assumption. GOMER M.R. and WILLIAMS L.L.R.
2021ApJ...915....4L 17       D               2 34 ~ What makes quadruply lensed quasars quadruple? LUHTARU R., SCHECHTER P.L. and DE SOTO K.M.
2021ApJ...916...70Z 44           X         1 3 ~ Model-independent estimation of H0 and ΩK from strongly lensed fast radio bursts. ZHAO S., LIU B., LI Z., et al.
2021A&A...652A...7C 87               F     1 8 ~ TDCOSMO. VI. Distance measurements in time-delay cosmography under the mass-sheet transformation. CHEN G.C.-F., FASSNACHT C.D., SUYU S.H., et al.
2021A&A...653A.109F 714       D     X C       16 78 9 Microlensing of the broad emission lines in 27 gravitationally lensed quasars. Broad line region structure and kinematics. FIAN C., MEDIAVILLA E., MOTTA V., et al.
2021AJ....162..175O 17       D               1 7 ~ Multiple Mg II absorption systems in the lines of sight to quadruply lensed quasar H1413+1143. OKOSHI K., MINOWA Y., KASHIKAWA N., et al.
2021MNRAS.508..755C 44           X         1 7 ~ Point spread function reconstruction of adaptive-optics imaging: meeting the astrometric requirements for time-delay cosmography. CHEN G.C.-F., TREU T., FASSNACHT C.D., et al.
2021A&A...654A.155H 177           X         4 2 7 Geometry and kinematics of the broad emission line region in the lensed quasar Q2237+0305. HUTSEMEKERS D. and SLUSE D.
2021MNRAS.508.4625H 17       D               1 12 4 Using strong lensing to understand the microJy radio emission in two radio quiet quasars at redshift 1.7. HARTLEY P., JACKSON N., BADOLE S., et al.
2021MNRAS.508.5449D 409       D     X C       9 35 6 Bayesian analysis of quasar light curves with a running optimal average: new time delay measurements of COSMOGRAIL gravitationally lensed quasars. DONNAN F.R., HORNE K. and HERNANDEZ SANTISTEBAN J.V.
2021A&A...656A.108M 44           X         1 9 4 First black hole mass estimation for the quadruple lensed system WGD2038-4008. MELO A., MOTTA V., GODOY N., et al.
2022MNRAS.512.3163G 135           X   F     2 11 17 The primordial matter power spectrum on sub-galactic scales. GILMAN D., BENSON A., BOVY J., et al.
2022A&A...659A.127V 47           X         1 8 16 TDCOSMO. VII. Boxyness/discyness in lensing galaxies: Detectability and impact on H0. VAN DE VYVERE L., GOMER M.R., SLUSE D., et al.
2022MNRAS.513.2349C 116     A         F     2 9 ~ SHARP - VIII. J0924+0219 lens mass distribution and time-delay prediction through adaptive-optics imaging. CHEN G.C.-F., FASSNACHT C.D., SUYU S.H., et al.
2022ApJ...929..123E 18       D               1 34 ~ Abundance of LIGO/Virgo Black Holes from Microlensing Observations of Quasars with Reverberation Mapping Size Estimates. ESTEBAN-GUTIERREZ A., AGUES-PASZKOWSKY N., MEDIAVILLA E., et al.
2022MNRAS.514.1433W 18       D               1 7 ~ Constraints on interacting dark energy models from time-delay cosmography with seven lensed quasars. WANG L.-F., ZHANG J.-H., HE D.-Z., et al.
2022ApJ...934..108C 45           X         1 7 ~ A New Way to Explore Cosmological Tensions Using Gravitational Waves and Strong Gravitational Lensing. CAO M.-D., ZHENG J., QI J.-Z., et al.
2022MNRAS.516.1977G 45           X         1 5 4 Prospects of strongly lensed fast radio bursts: simultaneous measurement of post-Newtonian parameter and Hubble constant. GAO R., LI Z. and GAO H.
2022ApJ...939...37L 45           X         1 6 ~ Revisiting the Hubble Constant, Spatial Curvature, and Cosmography with Strongly Lensed Quasar and Hubble Parameter Observations. LIU T., CAO S., BIESIADA M., et al.
2022A&A...666A..11P viz 18       D               1 16 2 X-ray illuminated accretion discs and quasar microlensing disc sizes. PAPADAKIS I.E., DOVCIAK M. and KAMMOUN E.S.
2022A&A...667A.123S 48           X         1 4 13 TDCOSMO IX. Systematic comparison between lens modelling software programs: Time-delay prediction for WGD 2038-4008. SHAJIB A.J., WONG K.C., BIRRER S., et al.
2022A&A...668A..51L 45           X         1 6 4 Revising the Hubble constant, spatial curvature and dark energy dynamics with the latest observations of quasars. LIU T., CAO S., LI X., et al.
2023RAA....23c5001Z 187     A D     X         5 25 ~ Forecast of Observing Time Delay of Strongly Lensed Quasars with the Muztagh-Ata 1.93 m Telescope. ZHU S., SHU Y., YUAN H., et al.
2023MNRAS.521.4963D 47           X         1 8 1 Model-independent determination of H0 and Ω_K, 0_ using time-delay galaxy lenses and gamma-ray bursts. DU S.-S., WEI J.-J., YOU Z.-Q., et al.
2023MNRAS.522.1863P 812       D     X C F     16 17 ~ Constraints on the inner regions of lensing galaxies from central images using a recent AGN offset distribution. PERERA D., WILLIAMS L.L.R. and SCARLATA C.
2023MNRAS.522.5434D 19       D               1 12 2 Strong lensing constraints on primordial black holes as a dark matter candidate. DIKE V., GILMAN D. and TREU T.
2023A&A...673A..88A viz 513     A D     X C       11 22 ~ Probing compact dark matter objects with microlensing in gravitationally lensed quasars. AWAD P., CHAN J.H.H., MILLON M., et al.
2023MNRAS.519.2528M 65       D     X         2 31 ~ Model selection using time-delay lenses. MELIA F., WEI J.-J. and WU X.-F.
2023A&A...677A..94F 19       D               1 10 ~ Diffuse emission in microlensed quasars and its implications for accretion-disk physics. FIAN C., CHELOUCHE D. and KASPI S.
2023A&A...680A..51M 392       D     X         9 33 ~ Black hole masses for 14 gravitationally lensed quasars. MELO A., MOTTA V., MEJIA-RESTREPO J., et al.
2024ApJ...962..108B 170       D     X C       3 3 ~ A Malmquist-like Bias in the Inferred Areas of Diamond Caustics and Consequences for the Inferred Time Delays of Gravitationally Lensed Quasars. BALDWIN D.M. and SCHECHTER P.L.

goto View the references in ADSLimited to 100