[OIH2005] SDSS J1206+4332 , the SIMBAD biblio

[OIH2005] SDSS J1206+4332 , the SIMBAD biblio (53 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.20CEST00:32:21


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2005ApJ...622..106O 52       D     X C F     26 42 Discovery of two gravitationally lensed quasars with image separations of 3" from the sloan digital sky survey. OGURI M., INADA N., HENNAWI J.F., et al.
2011MNRAS.413.2121M 15       D               1 44 1 Cusped mass density profiles and magnification ratios of double-image gravitational lenses. MUTKA P.T.
2012AJ....143..120O 16       D               1 26 62 The Sloan Digital Sky Survey Quasar Lens Search. VI. Constraints on dark energy and the evolution of massive galaxies. OGURI M., INADA N., STRAUSS M.A., et al.
2013ApJ...764..160G 16       D               2 53 44 Microlensing of quasar broad emission lines: constraints on broad line region size. GUERRAS E., MEDIAVILLA E., JIMENEZ-VICENTE J., et al.
2013MNRAS.431.1528B 16       D               2 22 4 Bayesian approach to gravitational lens model selection: constraining H0 with a selected sample of strong lenses. BALMES I. and CORASANITI P.S.
2013A&A...553A.121E viz 79 T                   1 12 36 COSMOGRAIL: the COSmological MOnitoring. of GRAvItational Lenses. XII. Time delays of the doubly lensed quasars
SDSS J1206+4332 and HS 2209+1914.
EULAERS E., TEWES M., MAGAIN P., et al.
2013ApJ...778..123G 16       D               3 41 9 Microlensing of quasar ultraviolet iron emission. GUERRAS E., MEDIAVILLA E., JIMENEZ-VICENTE J., et al.
2015ApJ...799..149J 16       D               1 64 30 Dark matter mass fraction in lens galaxies: new estimates from microlensing. JIMENEZ-VICENTE J., MEDIAVILLA E., KOCHANEK C.S., et al.
2015MNRAS.452.2423Y 16       D               1 126 10 Cosmological test using strong gravitational lensing systems. YUAN C.C. and WANG F.Y.
2016MNRAS.458....2R viz 16       D               1 128 41 Subaru Telescope adaptive optics observations of gravitationally lensed quasars in the Sloan Digital Sky Survey. RUSU C.E., OGURI M., MINOWA Y., et al.
2016MNRAS.458.3830A 666 T   A     X C       15 11 7 Spectroscopy and high-resolution imaging of the gravitational lens
SDSS J1206+4332.
AGNELLO A., SONNENFELD A., SUYU S.H., et al.
2017MNRAS.471.2013A 42           X         1 22 22 Quasar lenses and galactic streams: outlier selection and Gaia multiplet detection. AGNELLO A.
2018MNRAS.476.5075S 16       D               2 104 40 Gravitational lensing reveals extreme dust-obscured star formation in quasar host galaxies. STACEY H.R., McKEAN J.P., ROBERTSON N.C., et al.
2018MNRAS.481.1041T 41           X         1 44 20 The STRong lensing Insights into the Dark Energy Survey (STRIDES) 2016 follow-up campaign - I. Overview and classification of candidates selected by two techniques. TREU T., AGNELLO A., BAUMER M.A., et al.
2019MNRAS.483.4242L 42           X         1 177 65 Gravitationally lensed quasars in Gaia - III. 22 new lensed quasars from Gaia data release 2. LEMON C.A., AUGER M.W. and McMAHON R.G.
2019MNRAS.484.4726B 1397 T   A S   X C F     29 8 273 H0LiCOW - IX. Cosmographic analysis of the doubly imaged quasar
SDSS 1206+4332 and a new measurement of the Hubble constant.
BIRRER S., TREU T., RUSU C.E., et al.
2019MNRAS.486.4987R viz 42           X         1 31 22 A search for gravitationally lensed quasars and quasar pairs in Pan-STARRS1: spectroscopy and sources of shear in the diamond 2M1134-2103. RUSU C.E., BERGHEA C.T., FASSNACHT C.D., et al.
2019A&A...628L...7T 84           X         2 4 ~ The Hubble constant determined through an inverse distance ladder including quasar time delays and Type Ia supernovae. TAUBENBERGER S., SUYU S.H., KOMATSU E., et al.
2019ApJ...883....3L 401     A S   X C       8 6 ~ Measuring the distances to quasars at high redshifts with strong lensing. LIAO K.
2019A&A...629A..97B viz 11 ~ COSMOGRAIL. XVIII. time delays of the quadruply lensed quasar WFI2033-4723. BONVIN V., MILLON M., CHAN J.H.-H., et al.
2019MNRAS.489.2097B 42           X         1 8 ~ Astrometric requirements for strong lensing time-delay cosmography. BIRRER S. and TREU T.
2019MNRAS.490.1743C 70           X         1 5 142 A SHARP view of H0LiCOW: H0 from three time-delay gravitational lens systems with adaptive optics imaging. CHEN G.C.-F., FASSNACHT C.D., SUYU S.H., et al.
2020ApJ...892L..27B 60       D     X         2 7 ~ Could quasar lensing time delays hint to a core component in halos, instead of H0 tension? BLUM K., CASTORINA E. and SIMONOVIC M.
2020ApJ...895L..29L 102       D     X         3 7 ~ Determining model-independent H0 and consistency tests. LIAO K., SHAFIELOO A., KEELEY R.E., et al.
2020MNRAS.494.6072S 93           X         2 18 155 STRIDES: a 3.9 per cent measurement of the Hubble constant from the strong lens system DES J0408-5354. SHAJIB A.J., BIRRER S., TREU T., et al.
2020ApJ...897..127W 60       D     X         2 14 ~ Cosmology-independent estimate of the Hubble constant and spatial curvature using time-delay lenses and quasars. WEI J.-J. and MELIA F.
2020A&A...639A..57A 85           X         2 8 ~ Cosmic dissonance: are new physics or systematics behind a short sound horizon? ARENDSE N., WOJTAK R.J., AGNELLO A., et al.
2020A&A...639A.101M 376       D     X         9 7 132 TDCOSMO. I. An exploration of systematic uncertainties in the inference of H0 from time-delay cosmography. MILLON M., GALAN A., COURBIN F., et al.
2020MNRAS.497L..56Y 213           X   F     4 5 ~ The first simultaneous measurement of Hubble constant and post-Newtonian parameter from time-delay strong lensing. YANG T., BIRRER S. and HU B.
2020A&A...640A.105M viz 61       D     X         2 44 54 COSMOGRAIL. XIX. Time delays in 18 strongly lensed quasars from 15 years of optical monitoring. MILLON M., COURBIN F., BONVIN V., et al.
2020ApJ...900..160L 60       D     X         2 6 ~ H0 reconstruction with Type Ia supernovae, baryon acoustic oscillation and gravitational lensing time delay. LYU M.-Z., HARIDASU B.S., VIEL M., et al.
2020MNRAS.498.1406T 43           X         1 6 ~ H0LiCOW - XI. A weak lensing measurement of the external convergence in the field of the lensed quasar B1608+656 using HST and Subaru deep imaging. TIHHONOVA O., COURBIN F., HARVEY D., et al.
2020MNRAS.498.1420W 920       D     X C       18 6 823 H0LiCOW - XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3σ tension between early- and late-Universe probes. WONG K.C., SUYU S.H., CHEN G.C.-F., et al.
2020MNRAS.498.1440R 49           X         1 14 84 H0LiCOW XII. Lens mass model of WFI2033 - 4723 and blind measurement of its time-delay distance and H0. RUSU C.E., WONG K.C., BONVIN V., et al.
2020MNRAS.498.2871H 17       D               1 27 ~ A 4 per cent measurement of H0 using the cumulative distribution of strong lensing time delays in doubly imaged quasars. HARVEY D.
2020A&A...642A.194G 298           X C       6 9 ~ TDCOSMO. III. Dark matter substructure meets dark energy. The effects of (sub)halos on strong-lensing measurements of H0. GILMAN D., BIRRER S. and TREU T.
2020MNRAS.499.2845H 19       D               1 28 58 The KBC void and Hubble tension contradict ΛCDM on a Gpc scale - Milgromian dynamics as a possible solution. HASLBAUER M., BANIK I. and KROUPA P.
2020A&A...643A.165B 65       D     X         2 40 233 TDCOSMO. IV. Hierarchical time-delay cosmography - joint inference of the Hubble constant and galaxy density profiles. BIRRER S., SHAJIB A.J., GALAN A., et al.
2021MNRAS.501..269D 757       D S   X   F     16 8 ~ Testing the evolution of correlations between supermassive black holes and their host galaxies using eight strongly lensed quasars. DING X., TREU T., BIRRER S., et al.
2021MNRAS.503.1557S 44           X         1 65 ~ High-resolution imaging follow-up of doubly imaged quasars. SHAJIB A.J., MOLINA E., AGNELLO A., et al.
2021MNRAS.503.2179Q 44           X         1 7 ~ Measurements of the Hubble constant and cosmic curvature with quasars: ultracompact radio structure and strong gravitational lensing. QI J.-Z., ZHAO J.-W., CAO S., et al.
2021A&A...653A.109F 827     A D     X C       19 78 9 Microlensing of the broad emission lines in 27 gravitationally lensed quasars. Broad line region structure and kinematics. FIAN C., MEDIAVILLA E., MOTTA V., et al.
2021MNRAS.508..755C 44           X         1 7 ~ Point spread function reconstruction of adaptive-optics imaging: meeting the astrometric requirements for time-delay cosmography. CHEN G.C.-F., TREU T., FASSNACHT C.D., et al.
2021MNRAS.508.5449D 17       D               1 35 6 Bayesian analysis of quasar light curves with a running optimal average: new time delay measurements of COSMOGRAIL gravitationally lensed quasars. DONNAN F.R., HORNE K. and HERNANDEZ SANTISTEBAN J.V.
2022MNRAS.514.1433W 18       D               1 7 ~ Constraints on interacting dark energy models from time-delay cosmography with seven lensed quasars. WANG L.-F., ZHANG J.-H., HE D.-Z., et al.
2022ApJ...934..108C 45           X         1 7 ~ A New Way to Explore Cosmological Tensions Using Gravitational Waves and Strong Gravitational Lensing. CAO M.-D., ZHENG J., QI J.-Z., et al.
2022ApJ...939...37L 45           X         1 6 ~ Revisiting the Hubble Constant, Spatial Curvature, and Cosmography with Strongly Lensed Quasar and Hubble Parameter Observations. LIU T., CAO S., BIESIADA M., et al.
2022A&A...668A..51L 90           X         2 6 4 Revising the Hubble constant, spatial curvature and dark energy dynamics with the latest observations of quasars. LIU T., CAO S., LI X., et al.
2023MNRAS.520.5982H 47           X         1 3 2 Measuring line-of-sight shear with Einstein rings: a proof of concept. HOGG N.B., FLEURY P., LARENA J., et al.
2023MNRAS.521.4963D 47           X         1 8 1 Model-independent determination of H0 and Ω_K, 0_ using time-delay galaxy lenses and gamma-ray bursts. DU S.-S., WEI J.-J., YOU Z.-Q., et al.
2023A&A...673A..88A viz 280     A D     X         7 22 ~ Probing compact dark matter objects with microlensing in gravitationally lensed quasars. AWAD P., CHAN J.H.H., MILLON M., et al.
2023ApJ...950...37M 653     A D S   X C       13 6 ~ TD-CARMA: Painless, Accurate, and Scalable Estimates of Gravitational Lens Time Delays with Flexible CARMA Processes. MEYER A.D., VAN DYK D.A., TAK H., et al.
2023MNRAS.519.2528M 19       D               1 31 ~ Model selection using time-delay lenses. MELIA F., WEI J.-J. and WU X.-F.

goto View the references in ADS