[VV2006] J043814.8-122314 , the SIMBAD biblio

[VV2006] J043814.8-122314 , the SIMBAD biblio (209 results) C.D.S. - SIMBAD4 rel 1.8 - 2022.12.07CET02:02:34


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2002A&A...395...17W 111 T K                 10 42
HE 0435-1223: A wide separation quadruple QSO and gravitational lens.
WISOTZKI L., SCHECHTER P.L., BRADT H.V., et al.
2003A&A...408..455W 112 T K                 10 54 Integral-field spectrophotometry of the quadruple QSO
HE 0435-1223: Evidence for microlensing.
WISOTZKI L., BECKER T., CHRISTENSEN L., et al.
2003A&A...412..399V 72 145 A catalogue of quasars and active nuclei: 11th edition. VERON-CETTY M.-P. and VERON P.
2003ApJ...598..138K 1 23 103 Identifying lenses with small-scale structure. I. Cusp lenses. KEETON C.R., GAUDI B.S. and PETTERS A.O.
2003MNRAS.343..639O 78 60 The redshift distribution of gravitational lenses revisited: constraints on galaxy mass evolution. OFEK E.O., RIX H.-W. and MAOZ D.
2004AJ....127.2617M 31 35 WFI J2026-4536 and WFI J2033-4723: two new quadruple gravitational lenses. MORGAN N.D., CALDWELL J.A.R., SCHECHTER P.L., et al.
2004ApJ...603..531R 32 23 Spectrophotometry of planetary nebulae in the bulge of M31. ROTH M.M., BECKER T., KELZ A., et al.
2004ApJ...610...69K 2 19 142 Tests for substructure in gravitational lenses. KOCHANEK C.S. and DALAL N.
2004AN....325..135W 10 9 Integral field spectrophotometry of gravitationally lensed QSOs with PMAS. WISOTZKI L., BECKER T., CHRISTENSEN L., et al.
2004IAUS..220..103S 7 17 The dark matter content of lensing galaxies at 1.5 Re. SCHECHTER P.L. and WAMBSGANSS J.
2005AJ....129.2531M 112 T K                 31 35 The lens redshift and galaxy environment for
HE 0435-1223.
MORGAN N.D., KOCHANEK C.S., PEVUNOVA O., et al.
2005ApJ...622...72M 1 15 37 Testing ΛCDM with gravitational lensing constraints on small-scale structure. METCALF R.B.
2005ApJ...622..106O 25 42 Discovery of two gravitationally lensed quasars with image separations of 3" from the sloan digital sky survey. OGURI M., INADA N., HENNAWI J.F., et al.
2005ApJ...635...35K 30 52 Identifying lenses with small-scale structure. II. Fold lenses. KEETON C.R., GAUDI B.S. and PETTERS A.O.
2006A&A...450..461S 28 16 COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. IV. Models of prospective time-delay lenses. SAHA P., COURBIN F., SLUSE D., et al.
2006A&A...451..759E 45 42 COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. III. Redshift of the lensing galaxy in eight gravitationally lensed quasars. EIGENBROD A., COURBIN F., MEYLAN G., et al.
2006A&A...452...25U 23 16 Time delay of SBS 0909+532. ULLAN A., GOICOECHEA L.J., ZHELEZNYAK A.P., et al.
2006A&A...455..773V viz 108223 545 A catalogue of quasars and active nuclei: 12th edition. VERON-CETTY M.-P. and VERON P.
2006AJ....132..999O viz 1 21 75 The Sloan Digital Sky Survey Quasar Lens Search. I. Candidate selection algorithm. OGURI M., INADA N., PINDOR B., et al.
2006ApJ...640...47K 113 T K                 26 100 The time delays of gravitational lens
HE 0435-1223: an early-type galaxy with a rising rotation curve.
KOCHANEK C.S., MORGAN N.D., FALCO E.E., et al.
2006ApJ...641...70O 37   K                 27 27 Spectroscopic redshifts for seven lens galaxies. OFEK E.O., MAOZ D., RIX H.-W., et al.
2006ApJ...642...22Y 37   K                 30 33 Halo structures of gravitational lens galaxies. YOO J., KOCHANEK C.S., FALCO E.E., et al.
2006ApJ...649..616P 2 60 245 Probing the coevolution of supermassive black holes and galaxies using gravitationally lensed quasar hosts. PENG C.Y., IMPEY C.D., RIX H.-W., et al.
2006MNRAS.365.1243D 22 37 Finite source effects in strong lensing: implications for the substructure mass scale. DOBLER G. and KEETON C.R.
2006MNRAS.370.1339H 2 5 22 Isophotal shapes of elliptical/lenticular galaxies from the Sloan Digital Sky Survey. HAO C.N., MAO S., DENG Z.G., et al.
2006NewAR..49..573R 8 0 PSF-fitting techniques for crowded field 3D spectroscopy. ROTH M.M.
2006NewAR..50..252R 6 0 The Euro3D research training network. ROTH M.M.
2006ApJ...650L..17S 1 24 51 The Hubble time inferred from 10 time delay lenses. SAHA P., COLES J., MACCIO A.V., et al.
2006A&A...460..647D         O           21 16 A simple analysis of halo density profiles using gravitational lensing time delays. DOBKE B.M. and KING L.J.
2007ApJ...660....1O 1 46 101 Gravitational lens time delays: a statistical assessment of lens model dependences and implications for the global Hubble constant. OGURI M.
2007ApJ...662...62F viz 2 8 32 A time delay for the cluster-lensed quasar SDSS J1004+4112. FOHLMEISTER J., KOCHANEK C.S., FALCO E.E., et al.
2007AJ....134..668A 46 33 The gravitational lens-galaxy group connection. II. Groups associated with B2319+051 and B1600+434. AUGER M.W., FASSNACHT C.D., ABRAHAMSE A.L., et al.
2008ApJ...674...75L 76           X         2 2 3 Strong-lensing time delay: a new way of measuring cosmic shear. LIEU R.
2008AJ....135..374B 38           X         1 11 11 HE 1113-0641: the smallest-separation quadruple lens identified by a ground-based optical telescope. BLACKBURNE J.A., WISOTZKI L. and SCHECHTER P.L.
2008A&A...480..647E 38           X         1 24 32 Microlensing variability in the gravitationally lensed quasar. QSO 2237+0305 = the Einstein Cross. I. Spectrophotometric monitoring with the VLT. EIGENBROD A., COURBIN F., SLUSE D., et al.
2008A&A...485..403O 91       D     X         3 67 13 Extinction properties of lensing galaxies. OESTMAN L., GOOBAR A. and MOERTSELL E.
2008ApJ...685..725W 15       D               2 33 9 Lensed image angles: new statistical evidence for substructure. WILLIAMS L.L.R., FOLEY P., FARNSWORTH D., et al.
2009ApJ...699.1578M 76           X         2 29 30 Detection of a companion lens galaxy using the mid-infrared flux ratios of the gravitationally lensed quasar H1413+117. MacLEOD C.L., KOCHANEK C.S. and AGOL E.
2009RMxAC..35..195F 76             C       1 39 0 Cosmology with gravitational lenses. FALCO E.E.
2009ApJ...706.1451M 92       D         F     2 70 41 Microlensing-based estimate of the mass fraction in compact objects in lens galaxies. MEDIAVILLA E., MUNOZ J.A., FALCO E., et al.
2010ApJ...709..552C 937       D     X   F     24 105 10 Identifying anomalies in gravitational lens time delays. CONGDON A.B., KEETON C.R. and NORDGREN C.E.
2010ApJ...711..246F 39           X         1 15 45 Improved constraints on the gravitational lens Q0957+561. II. Strong lensing. FADELY R., KEETON C.R., NAKAJIMA R., et al.
2010ApJ...712.1129M 61       D     X         2 12 170 The quasar accretion disk size-black hole mass relation. MORGAN C.W., KOCHANEK C.S., MORGAN N.D., et al.
2010ApJ...712.1378P 170       D     X   F     4 20 42 The Hubble constant inferred from 18 time-delay lenses. PARAFICZ D. and HJORTH J.
2010ApJ...716.1579L 15       D               2 48 34 Cosmic evolution of virial and stellar mass in massive early-type galaxies. LAGATTUTA D.J., FASSNACHT C.D., AUGER M.W., et al.
2010ApJ...718.1079B 452     A S   X C F     9 1 14 The effect of a time-varying accretion disk size on quasar microlensing light curves. BLACKBURNE J.A. and KOCHANEK C.S.
2010A&A...518A..10V viz 15       D               2 168912 373 A catalogue of quasars and active nuclei: 13th edition. VERON-CETTY M.-P. and VERON P.
2011ApJ...726...84W 829       D     X C       21 14 52 The effect of environment on shear in strong gravitational lenses. WONG K.C., KEETON C.R., WILLIAMS K.A., et al.
2010A&A...522A..95C 154           X         4 52 23 COSMOGRAIL: the COSmological MOnitoring of GRAvItational lenses. VIII. Deconvolution of high resolution near-IR images and simple mass models for 7 gravitationally lensed quasars. CHANTRY V., SLUSE D. and MAGAIN P.
2011AJ....141..101F 542     A D S   X C F     12 32 21 Near-infrared K and l' flux ratios in six lensed quasars. FADELY R. and KEETON C.R.
2011ApJ...728..145M 1316   K A D S   X C       33 11 34 A study of gravitational lens chromaticity using ground-based narrowband photometry. MOSQUERA A.M., MUNOZ J.A., MEDIAVILLA E., et al.
2011ApJ...729...34B 210       D     X C       5 55 113 Sizes and temperature profiles of quasar accretion disks from chromatic microlensing. BLACKBURNE J.A., POOLEY D., RAPPAPORT S., et al.
2011MNRAS.410.2167F 15       D               2 21 35 Galaxy number counts and implications for strong lensing. FASSNACHT C.D., KOOPMANS L.V.E. and WONG K.C.
2011A&A...528A..42R viz 758 T   A   O X C       18 18 13 Flux and color variations of the quadruply imaged quasar He 0435-1223. RICCI D., POELS J., ELYIV A., et al.
2011MNRAS.413..367S 40           X         1 12 30 Supernova tests of the timescape cosmology. SMALE P.R. and WILTSHIRE D.L.
2011ApJ...738...96M 54       D     X         2 90 67 The microlensing properties of a sample of 87 lensed quasars. MOSQUERA A.M. and KOCHANEK C.S.
2011BaltA..20..125H 4 4 Towards the automatic estimation of time delays of gravitational lenses. HIRV A., OLSPERT N. and PELT J.
2011A&A...536A..53C viz 1110 T   A S   X C       26 9 82 COSMOGRAIL: the COSmological MOnitoring of GRAvItational lenses. IX. Time delays, lens dynamics and baryonic fraction in He 0435-1223. COURBIN F., CHANTRY V., REVAZ Y., et al.
2012ApJ...744...90B 16       D               1 27 8 A graphics processing unit-enabled, high-resolution cosmological microlensing parameter survey. BATE N.F. and FLUKE C.J.
2012ApJ...744..111P 95       D     X         3 16 39 X-ray and optical flux ratio anomalies in quadruply lensed quasars. II. Mapping the dark matter content in elliptical galaxies. POOLEY D., RAPPAPORT S., BLACKBURNE J.A., et al.
2012MNRAS.419..936F 1506 T   A     X C       37 13 47 Substructure in the lens He 0435-1223. FADELY R. and KEETON C.R.
2012A&A...538A..99S 172       D     X         5 72 45 COSMOGRAIL: the COSmological MOnitoring of GRAvItational lenses. X. Modeling based on high-precision astrometry of a sample of 25 lensed quasars: consequences for ellipticity, shear, and astrometric anomalies. SLUSE D., CHANTRY V., MAGAIN P., et al.
2012MNRAS.420.2944W 94       D         F     2 41 5 The fundamental surface of quad lenses. WOLDESENBET A.G. and WILLIAMS L.L.R.
2012ApJ...751..106J 94       D     X         3 24 43 A robust determination of the size of quasar accretion disks using gravitational microlensing. JIMENEZ-VICENTE J., MEDIAVILLA E., MUNOZ J.A., et al.
2012ApJ...755...24C 1873   K A D     X C       48 13 35 X-ray monitoring of gravitational lenses with Chandra. CHEN B., DAI X., KOCHANEK C.S., et al.
2012ApJ...755...31C viz 16       D               2 312 26 Testing the dark energy with gravitational lensing statistics. CAO S., COVONE G. and ZHU Z.-H.
2012ApJ...756...52M viz 160           X         4 8 67 Further evidence that quasar X-ray emitting regions are compact: X-ray and optical microlensing in the lensed quasar Q J0158-4325. MORGAN C.W., HAINLINE L.J., CHEN B., et al.
2012A&A...544A..62S viz 796       D     X C       20 47 67 Microlensing of the broad line region in 17 lensed quasars. SLUSE D., HUTSEMEKERS D., COURBIN F., et al.
2012MNRAS.427.1867A 172       D       C F     8 21 10 Microlensing evidence for super-Eddington disc accretion in quasars. ABOLMASOV P. and SHAKURA N.I.
2013ApJ...764..160G 16       D               4 53 44 Microlensing of quasar broad emission lines: constraints on broad line region size. GUERRAS E., MEDIAVILLA E., JIMENEZ-VICENTE J., et al.
2013ApJ...764..186F 40           X         1 10 21 A two-year time delay for the lensed quasar SDSS J1029+2623. FOHLMEISTER J., KOCHANEK C.S., FALCO E.E., et al.
2013A&A...549A..71K 40         O X         1 14 38 Resolving stellar populations with crowded field 3D spectroscopy. KAMANN S., WISOTZKI L. and ROTH M.M.
2013A&A...551A.104R viz 142     A   O X         4 9 5 Flux and color variations of the doubly imaged quasar UM 673. RICCI D., ELYIV A., FINET F., et al.
2013ApJ...769L...7R 17       D               1 28 63 On the size and location of the X-ray emitting coronae around black holes. REIS R.C. and MILLER J.M.
2013ApJ...769...53M 82           X   F     1 12 82 The structure of the X-ray and optical emitting regions of the lensed quasar Q 2237+0305. MOSQUERA A.M., KOCHANEK C.S., CHEN B., et al.
2013PASA...30....4F viz 16       D               1 447 4 Optical Corrections to the Veron-Cetty and Veron Quasar Catalogue. FLESCH E.
2013A&A...553A.120T 482           X C       11 3 61 COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. XI. Techniques for time delay measurement in presence of microlensing. TEWES M., COURBIN F. and MEYLAN G.
2013A&A...553A.121E viz 40           X         1 12 36 COSMOGRAIL: the COSmological MOnitoring. of GRAvItational Lenses. XII. Time delays of the doubly lensed quasars SDSS J1206+4332 and HS 2209+1914. EULAERS E., TEWES M., MAGAIN P., et al.
2013ApJ...773...35M 40           X         1 7 27 Detection of substructure in the gravitationally lensed quasar MG0414+0534 using mid-infrared and radio VLBI observations. MacLEOD C.L., JONES R., AGOL E., et al.
2013MNRAS.434.3305E 39           X         1 8 6 Search for gravitational lens candidates in the XMM-LSS/CFHTLS common field. ELYIV A., MELNYK O., FINET F., et al.
2013A&A...556A..22T viz 43           X         1 11 90 COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. XIII. Time delays and 9-yr optical monitoring of the lensed quasar RX J1131-1231. TEWES M., COURBIN F., MEYLAN G., et al.
2013ApJ...778..123G 16       D               6 41 9 Microlensing of quasar ultraviolet iron emission. GUERRAS E., MEDIAVILLA E., JIMENEZ-VICENTE J., et al.
2013A&A...559A..37S 84           X         2 8 80 Mass-sheet degeneracy, power-law models and external convergence: Impact on the determination of the Hubble constant from gravitational lensing. SCHNEIDER P. and SLUSE D.
2014MNRAS.437..600S 16       D               2 40 30 Hubble constant and dark energy inferred from free-form determined time delay distances. SERENO M. and PARAFICZ D.
2014MNRAS.438.1435C 342     A     X C       8 11 17 Spatially resolved velocity maps of halo gas around two intermediate-redshift galaxies. CHEN H.-W., GAUTHIER J.-R., SHARON K., et al.
2014ApJ...783...47J 453       D     X C       11 26 33 The average size and temperature profile of quasar accretion disks. JIMENEZ-VICENTE J., MEDIAVILLA E., KOCHANEK C.S., et al.
2014MNRAS.439.2494O 16       D               1 162 55 The stellar and dark matter distributions in elliptical galaxies from the ensemble of strong gravitational lenses. OGURI M., RUSU C.E. and FALCO E.E.
2014A&A...565L..11B 583 T K A S   X C       12 2 14 Microlensing of the broad-line region in the quadruply imaged quasar HE 0435-1223. BRAIBANT L., HUTSEMEKERS D., SLUSE D., et al.
2014ApJ...789..125B viz 229 T K A     X         5 3 43 The optical, ultraviolet, and X-ray structure of the quasar He 0435-1223. BLACKBURNE J.A., KOCHANEK C.S., CHEN B., et al.
2014ApJ...793...96S 295       D     X C       7 20 40 A calibration of the stellar mass fundamental plane at z ∼ 0.5 using the micro-lensing-induced flux ratio anomalies of macro-lensed quasars. SCHECHTER P.L., POOLEY D., BLACKBURNE J.A., et al.
2014MNRAS.442.1090H 334       D     X C       8 16 6 Modelling spikes in quasar accretion disc temperature. HALL P.B., NOORDEH E.S., CHAJET L.S., et al.
2015ApJ...798...95B viz 84           X         2 6 29 The structure of HE 1104-1805 from infrared to X-ray. BLACKBURNE J.A., KOCHANEK C.S., CHEN B., et al.
2015ApJ...799...48B 16       D               1 20 5 Strongly lensed jets, time delays, and the value of H0. BARNACKA A., GELLER M.J., DELL'ANTONIO I.P., et al.
2015ApJ...799..149J 16       D               1 64 23 Dark matter mass fraction in lens galaxies: new estimates from microlensing. JIMENEZ-VICENTE J., MEDIAVILLA E., KOCHANEK C.S., et al.
2015ApJ...804...57S 40           X         1 14 5 Spatially resolving the kinematics of the ≲ 100 µas quasar broad-line region using spectroastrometry. STERN J., HENNAWI J.F. and POTT J.-U.
2015ApJ...805..161W 16       D               1 31 8 Broad iron emission from gravitationally lensed quasars observed by Chandra. WALTON D.J., REYNOLDS M.T., MILLER J.M., et al.
2015ApJ...806..251J 177       D     X C       4 74 17 Probing the dark matter radial profile in lens galaxies and the size of X-ray emitting region in quasars with microlensing. JIMENEZ-VICENTE J., MEDIAVILLA E., KOCHANEK C.S., et al.
2015ApJ...806..258M viz 45           X         1 6 34 A consistent picture emerges: a compact X-ray continuum emission region in the gravitationally lensed quasar SDSS J0924+0219. MacLEOD C.L., MORGAN C.W., MOSQUERA A., et al.
2015ApJS..219...29M viz 96       D     X         3 10653 13 A spectroscopic survey of the fields of 28 strong gravitational lenses. MOMCHEVA I.G., WILLIAMS K.A., COOL R.J., et al.
2015A&A...580A..38R 297       D     X C       7 50 19 H0 from ten well-measured time delay lenses. RATHNA KUMAR S., STALIN C.S. and PRABHU T.P.
2015MNRAS.451.4375F 17       D               1 57 91 Properties of AGN coronae in the NuSTAR era. FABIAN A.C., LOHFINK A., KARA E., et al.
2015MNRAS.454..287J 602     A D S   X C       14 45 14 Observations of radio-quiet quasars at 10-mas resolution by use of gravitational lensing. JACKSON N., TAGORE A.S., ROBERTS C., et al.
2016A&A...585A..84B viz 625       D     X C       15 7 2 Analysis of luminosity distributions and the shape parameters of strong gravitational lensing elliptical galaxies. BIERNAUX J., MAGAIN P., SLUSE D., et al.
2016A&A...585A..88B 51           X         1 3 30 COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. XV. Assessing the achievability and precision of time-delay measurements. BONVIN V., TEWES M., COURBIN F., et al.
2016ApJ...821..111K 41           X         1 5 2 On the problem of deformed spherical systems in modified newtonian dynamics. KO C.-M.
2016ApJ...824...53C 41           X         1 9 4 The wide-angle outflow of the lensed z = 1.51 AGN HS 0810+2554. CHARTAS G., CAPPI M., HAMANN F., et al.
2016MNRAS.458....2R viz 41           X         1 128 24 Subaru Telescope adaptive optics observations of gravitationally lensed quasars in the Sloan Digital Sky Survey. RUSU C.E., OGURI M., MINOWA Y., et al.
2016MNRAS.458.2423Z 1179     A D S   X C       28 18 18 Probing the cool interstellar and circumgalactic gas of three massive lensing galaxies at z = 0.4-0.7. ZAHEDY F.S., CHEN H.-W., RAUCH M., et al.
2016MNRAS.459..573A 41           X         1 8 1 Kernel regression estimates of time delays between gravitationally lensed fluxes. AL OTAIBI S., TINO P., CUEVAS-TELLO J.C., et al.
2016A&A...592A..23B 82           X         2 5 6 The different origins of high- and low-ionization broad emission lines revealed by gravitational microlensing in the Einstein cross. BRAIBANT L., HUTSEMEKERS D., SLUSE D., et al.
2016MNRAS.461.3714T 755 T K A S   X C F     15 11 3 A simple method to determine time delays in the presence of microlensing: application to HE 0435-1112 and PG 1115+080. TSVETKOVA V.S., SHULGA V.M. and BERDINA L.A.
2016MNRAS.461.4466C 138       D     X   F     3 14 2 Magnification relations of quad lenses and applications on Einstein crosses. CHU Z., LI G.L., LIN W.P., et al.
2016ApJ...832...46M 16       D               1 58 2 Peculiar transverse velocities of galaxies from quasar microlensing. Tentative estimate of the peculiar velocity dispersion at z ∼ 0.5. MEDIAVILLA E., JIMENEZ-VICENTE J., MUNOZ J.A., et al.
2016ApJ...833..194W viz 24     A               1 3427 8 A spectroscopic survey of the fields of 28 strong gravitational lenses: the group catalog. WILSON M.L., ZABLUDOFF A.I., AMMONS S.M., et al.
2016A&ARv..24...11T 48           X         1 7 53 Time delay cosmography. TREU T. and MARSHALL P.J.
2017ApJ...835..132M 905 T K A D S   X C       20 13 9 Probing the broad-line region and the accretion disk in the lensed quasars
HE 0435-1223, WFI 2033-4723, and HE 2149-2745 using gravitational microlensing.
MOTTA V., MEDIAVILLA E., ROJAS K., et al.
2017A&A...597A..49G 41           X         1 11 3 MiNDSTEp differential photometry of the gravitationally lensed quasars WFI 2033-4723 and HE 0047-1756: microlensing and a new time delay. GIANNINI E., SCHMIDT R.W., WAMBSGANSS J., et al.
2017ApJ...836..141M 89           X         2 5 35 Quantifying environmental and line-of-sight effects in models of strong gravitational lens systems. McCULLY C., KEETON C.R., WONG K.C., et al.
2017ApJ...836..206G 882       D     X C       21 7 7 Extended X-ray monitoring of gravitational lenses with Chandra and joint constraints on X-ray emission regions. GUERRAS E., DAI X., STEELE S., et al.
2017A&A...600A..79A 12 2 Apparent quasar disc sizes in the "bird's nest" paradigm. ABOLMASOV P.
2017MNRAS.465.4634D 717       D S   X C       16 9 15 H0LiCOW. VI. Testing the fidelity of lensed quasar host galaxy reconstruction. DING X., LIAO K., TREU T., et al.
2017MNRAS.465.4895W 1510 T   A     X C       35 13 53 H0LiCOW - IV. Lens mass model of
HE 0435-1223 and blind measurement of its time-delay distance for cosmology.
WONG K.C., SUYU S.H., AUGER M.W., et al.
2017MNRAS.465.4914B viz 1663 T K A D S   X C       38 9 156 H0LiCOW - V. New COSMOGRAIL time delays of
HE 0435-1223: H0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model.
BONVIN V., COURBIN F., SUYU S.H., et al.
2017MNRAS.467.4220R viz 3087 T K A D     X C F     73 273 35 H0LiCOW - III. Quantifying the effect of mass along the line of sight to the gravitational lens
HE 0435-1223 through weighted galaxy counts.
RUSU C.E., FASSNACHT C.D., SLUSE D., et al.
2017MNRAS.468.2590S 1781   K A D     X C F     42 6 67 H0LiCOW - I. H0 Lenses in COSMOGRAIL's Wellspring: program overview. SUYU S.H., BONVIN V., COURBIN F., et al.
2017A&A...604A..46B 412           X C       9 7 ~ Analysis of luminosity distributions of strong lensing galaxies: subtraction of diffuse lensed signal. BIERNAUX J., MAGAIN P. and HAURET C.
2017ApJ...847...96L 58       D     X         2 9 3 Centrally concentrated X-ray radiation from an extended accreting corona in active galactic nuclei. LIU B.F., TAAM R.E., QIAO E., et al.
2017MNRAS.470.4838S viz 1688 T K A D     X C F     39 449 24 H0LiCOW - II. Spectroscopic survey and galaxy-group identification of the strong gravitational lens system
HE 0435-1223.
SLUSE D., SONNENFELD A., RUMBAUGH N., et al.
2017MNRAS.469.3713H 42           X         1 11 13 SHARP - IV. An apparent flux-ratio anomaly resolved by the edge-on disc in B0712+472. HSUEH J.-W., OLDHAM L., SPINGOLA C., et al.
2017ApJ...850...94W viz 16       D               1 27 7 A spectroscopic survey of the fields of 28 strong gravitational lenses: implications for H0. WILSON M.L., ZABLUDOFF A.I., KEETON C.R., et al.
2017A&A...607A..32B 41           X         1 3 1 Constraining the geometry and kinematics of the quasar broad emission line region using gravitational microlensing. I. Models and simulations. BRAIBANT L., HUTSEMEKERS D., SLUSE D., et al.
2017MNRAS.471.2013A 41           X         1 22 14 Quasar lenses and galactic streams: outlier selection and Gaia multiplet detection. AGNELLO A.
2017MNRAS.471.2224N 990 T K A D     X C       23 10 20 Probing dark matter substructure in the gravitational lens

HE 0435-1223
with the WFC3 grism.
NIERENBERG A.M., TREU T., BRAMMER G., et al.
2017MNRAS.472.2906W 42           X         1 4 5 Strongly lensed gravitational waves and electromagnetic signals as powerful cosmic rulers. WEI J.-J. and WU X.-F.
2018MNRAS.473...80T 563       D     X C F     12 5 15 Microlensing makes lensed quasar time delays significantly time variable. TIE S.S. and KOCHANEK C.S.
2018MNRAS.473..210S 101       D     X         3 6 7 Improving time-delay cosmography with spatially resolved kinematics. SHAJIB A.J., TREU T. and AGNELLO A.
2017MNRAS.472...90D 1334       D S   X C F     30 146 9 H0LiCOW VII: cosmic evolution of the correlation between black hole mass and host galaxy luminosity. DING X., TREU T., SUYU S.H., et al.
2018ApJ...859...50F 1605       D     X C       38 76 2 Microlensing and intrinsic variability of the broad emission lines of lensed quasars. FIAN C., GUERRAS E., MEDIAVILLA E., et al.
2018MNRAS.476.5075S 100       D       C       3 103 6 Gravitational lensing reveals extreme dust-obscured star formation in quasar host galaxies. STACEY H.R., McKEAN J.P., ROBERTSON N.C., et al.
2018MNRAS.477.5657T 1446 T K A     X C       33 5 4 H0LiCOW VIII. A weak-lensing measurement of the external convergence in the field of the lensed quasar
HE 0435-1223.
TIHHONOVA O., COURBIN F., HARVEY D., et al.
2018A&A...616L..11K 125           X C       2 10 6 Gaia GraL: Gaia DR2 gravitational lens systems. I. New quadruply imaged quasar candidates around known quasars. KRONE-MARTINS A., DELCHAMBRE L., WERTZ O., et al.
2018A&A...616A.183B viz 43           X         1 5 5 COSMOGRAIL. XVII. Time delays for the quadruply imaged quasar PG 1115+080. BONVIN V., CHAN J.H.H., MILLON M., et al.
2018MNRAS.479.4796B 125           X C       2 32 2 HST imaging of four gravitationally lensed quasars. BATE N.F., VERNARDOS G., O'DOWD M.J., et al.
2018A&A...618A..56D viz 736     A     X C       17 20 ~ Gaia GraL: Gaia DR2 gravitational lens systems. II. The known multiply imaged quasars. DUCOURANT C., WERTZ O., KRONE-MARTINS A., et al.
2018ApJ...869..132F 819 T K A     X C       18 6 ~ Estimate of the accretion disk size in the gravitationally lensed quasar
HE 0435-1223 Using microlensing magnification statistics.
FIAN C., MEDIAVILLA E., JIMENEZ-VICENTE J., et al.
2019ApJ...871..113L 128           X         3 4 ~ Hubble constant from LSST strong-lens time delays with microlensing systematics. LIAO K.
2019MNRAS.483.2275L 128           X         3 16 ~ Reconciling the quasar microlensing disc size problem with a wind model of active galactic nucleus. LI Y.-P., YUAN F. and DAI X.
2019A&A...622A.165D viz 145       D     X C       3 17 ~ Gaia GraL: Gaia DR2 Gravitational Lens Systems. III. A systematic blind search for new lensed systems. DELCHAMBRE L., KRONE-MARTINS A., WERTZ O., et al.
2019MNRAS.484.4726B 170           X   F     3 8 ~ H0LiCOW - IX. Cosmographic analysis of the doubly imaged quasar SDSS 1206+4332 and a new measurement of the Hubble constant. BIRRER S., TREU T., RUSU C.E., et al.
2019ApJ...879...35D 2018       D     X C       47 29 ~ Constraining quasar relativistic reflection regions and spins with microlensing. DAI X., STEELE S., GUERRAS E., et al.
2019MNRAS.487.4492W 43           X         1 3 ~ Generalised model-independent characterisation of strong gravitational lenses - VI. The origin of the formalism intrinsic degeneracies and their influence on H0. WAGNER J.
2019A&A...628L...7T 43           X         1 4 ~ The Hubble constant determined through an inverse distance ladder including quasar time delays and Type Ia supernovae. TAUBENBERGER S., SUYU S.H., KOMATSU E., et al.
2019ApJ...883....3L 43           X         1 6 ~ Measuring the distances to quasars at high redshifts with strong lensing. LIAO K.
2019A&A...629A..43H 451 T   A     X C       9 3 ~ Constraining the geometry and kinematics of the quasar broad emission line region using gravitational microlensing. II. Comparing models with observations in the lensed quasar HE0435-1223. HUTSEMEKERS D., BRAIBANT L., SLUSE D., et al.
2019A&A...629A..97B viz 128           X         3 11 ~ COSMOGRAIL. XVIII. time delays of the quadruply lensed quasar WFI2033-4723. BONVIN V., MILLON M., CHAN J.H.-H., et al.
2019ApJ...886L..23L 187       D     X C       4 4 ~ A model-independent determination of the Hubble constant from lensed quasars and supernovae using Gaussian process regression. LIAO K., SHAFIELOO A., KEELEY R.E., et al.
2019ApJ...886...83K 43           X         1 32 ~ Probing structure in cold gas at z <= 1 with gravitationally lensed quasar sight lines. KULKARNI V.P., CASHMAN F.H., LOPEZ S., et al.
2019MNRAS.490..613S 170           X         4 2 ~ H0LiCOW - X. Spectroscopic/imaging survey and galaxy-group identification around the strong gravitational lens system WFI 2033-4723. SLUSE D., RUSU C.E., FASSNACHT C.D., et al.
2019MNRAS.489.2097B 43           X         1 8 ~ Astrometric requirements for strong lensing time-delay cosmography. BIRRER S. and TREU T.
2019MNRAS.490.1743C 2724     A D S   X C F     62 5 ~ A SHARP view of H0LiCOW: H0 from three time-delay gravitational lens systems with adaptive optics imaging. CHEN G.C.-F., FASSNACHT C.D., SUYU S.H., et al.
2019ApJ...887..126G viz 85           X         2 13 ~ Gravitational lens system PS J0147+4630 (Andromeda's Parachute): main lensing galaxy and optical variability of the quasar images. GOICOECHEA L.J. and SHALYAPIN V.N.
2020MNRAS.492.3047H 61       D     X         2 45 ~ SHARP - VII. New constraints on the dark matter free-streaming properties and substructure abundance from gravitationally lensed quasars. HSUEH J.-W., ENZI W., VEGETTI S., et al.
2020A&A...633A.107H 322       D     X         8 9 ~ The signature of primordial black holes in the dark matter halos of galaxies. HAWKINS M.R.S.
2020MNRAS.491.6077G 453       D     X C       10 35 ~ Warm dark matter chills out: constraints on the halo mass function and the free-streaming length of dark matter with eight quadruple-image strong gravitational lenses. GILMAN D., BIRRER S., NIERENBERG A., et al.
2020MNRAS.492.5314N 174           X         4 11 ~ Double dark matter vision: twice the number of compact-source lenses with narrow-line lensing and the WFC3 grism. NIERENBERG A.M., GILMAN D., TREU T., et al.
2020MNRAS.493.1725K 17       D               1 6 ~ Overconstrained gravitational lens models and the Hubble constant. KOCHANEK C.S.
2020ApJ...892L..27B 17       D               1 7 ~ Could quasar lensing time delays hint to a core component in halos, instead of H0 tension? BLUM K., CASTORINA E. and SIMONOVIC M.
2020ApJ...895L..29L 17       D               2 7 ~ Determining model-independent H0 and consistency tests. LIAO K., SHAFIELOO A., KEELEY R.E., et al.
2020ApJ...895...93C 17       D               1 16 ~ Quasar microlensing variability studies favor shallow accretion disk temperature profiles. CORNACHIONE M.A. and MORGAN C.W.
2020MNRAS.494.6072S 87           X         2 18 ~ STRIDES: a 3.9 per cent measurement of the Hubble constant from the strong lens system DES J0408-5354. SHAJIB A.J., BIRRER S., TREU T., et al.
2020ApJ...896..111G 670       D     X C       15 19 ~ A second-order moment of microlensing variability as a novel tool to constrain source emission size or discrete lens demographics in extragalactic research. GUERRAS E., DAI X. and MEDIAVILLA E.
2020ApJ...897..127W 61       D     X         2 14 ~ Cosmology-independent estimate of the Hubble constant and spatial curvature using time-delay lenses and quasars. WEI J.-J. and MELIA F.
2020A&A...639A..57A 87           X         2 8 ~ Cosmic dissonance: are new physics or systematics behind a short sound horizon? ARENDSE N., WOJTAK R.J., AGNELLO A., et al.
2020A&A...639A.101M 61       D     X         2 7 ~ TDCOSMO. I. An exploration of systematic uncertainties in the inference of H0 from time-delay cosmography. MILLON M., GALAN A., COURBIN F., et al.
2020A&A...640A.105M viz 392     A D S   X         9 44 ~ COSMOGRAIL. XIX. Time delays in 18 strongly lensed quasars from 15 years of optical monitoring. MILLON M., COURBIN F., BONVIN V., et al.
2020ApJ...900..160L 61       D     X         2 6 ~ H0 reconstruction with Type Ia supernovae, baryon acoustic oscillation and gravitational lensing time delay. LYU M.-Z., HARIDASU B.S., VIEL M., et al.
2020MNRAS.498.1406T 174           X         4 6 ~ H0LiCOW - XI. A weak lensing measurement of the external convergence in the field of the lensed quasar B1608+656 using HST and Subaru deep imaging. TIHHONOVA O., COURBIN F., HARVEY D., et al.
2020MNRAS.498.1420W 627       D     X C       14 6 ~ H0LiCOW - XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3σ tension between early- and late-Universe probes. WONG K.C., SUYU S.H., CHEN G.C.-F., et al.
2020MNRAS.498.1440R 131           X         3 14 ~ H0LiCOW XII. Lens mass model of WFI2033 - 4723 and blind measurement of its time-delay distance and H0. RUSU C.E., WONG K.C., BONVIN V., et al.
2020MNRAS.498.2871H 44           X         1 27 ~ A 4 per cent measurement of H0 using the cumulative distribution of strong lensing time delays in doubly imaged quasars. HARVEY D.
2020MNRAS.498.3241B 131           X         3 5 ~ STRIDES: Spectroscopic and photometric characterization of the environment and effects of mass along the line of sight to the gravitational lenses DES J0408-5354 and WGD 2038-4008. BUCKLEY-GEER E.J., LIN H., RUSU C.E., et al.
2020A&A...642A.194G 540       D     X C       12 9 ~ TDCOSMO. III. Dark matter substructure meets dark energy. The effects of (sub)halos on strong-lensing measurements of H0. GILMAN D., BIRRER S. and TREU T.
2020MNRAS.499.2845H 17       D               1 28 ~ The KBC void and Hubble tension contradict ΛCDM on a Gpc scale - Milgromian dynamics as a possible solution. HASLBAUER M., BANIK I. and KROUPA P.
2020A&A...643A.165B 61       D     X         2 40 ~ TDCOSMO. IV. Hierarchical time-delay cosmography - joint inference of the Hubble constant and galaxy density profiles. BIRRER S., SHAJIB A.J., GALAN A., et al.
2021MNRAS.501..269D 1407       D S   X C F     29 8 ~ Testing the evolution of correlations between supermassive black holes and their host galaxies using eight strongly lensed quasars. DING X., TREU T., BIRRER S., et al.
2021MNRAS.501..784D 555       D S   X   F     11 8 ~ The Hubble constant from eight time-delay galaxy lenses. DENZEL P., COLES J.P., SAHA P., et al.
2021A&A...645A..78B 45           X         1 4 ~ Super-Eddington accretion in the Q2237+0305 quasar? BERDINA L.A., TSVETKOVA V.S. and SHULGA V.M.
2021MNRAS.502.2912S 108       D       C       3 4 ~ Discovering strongly lensed QSOs from unresolved light curves. SHU Y., BELOKUROV V. and EVANS N.W.
2021A&A...647A.115C 45           X         1 7 ~ Measuring accretion disk sizes of lensed quasars with microlensing time delay in multi-band light curves. CHAN J.H.H., ROJAS K., MILLON M., et al.
2021MNRAS.503.2179Q 45           X         1 7 ~ Measurements of the Hubble constant and cosmic curvature with quasars: ultracompact radio structure and strong gravitational lensing. QI J.-Z., ZHAO J.-W., CAO S., et al.
2021MNRAS.504.1340G 63       D     X         2 47 ~ Galaxy-lens determination of H0: the effect of the ellipse + shear modelling assumption. GOMER M.R. and WILLIAMS L.L.R.
2021ApJ...915....4L 18       D               2 34 ~ What makes quadruply lensed quasars quadruple? LUHTARU R., SCHECHTER P.L. and DE SOTO K.M.
2021ApJ...916...70Z 45           X         1 3 ~ Model-independent estimation of H0 and ΩK from strongly lensed fast radio bursts. ZHAO S., LIU B., LI Z., et al.
2021A&A...652A...7C 90               F     1 8 ~ TDCOSMO. VI. Distance measurements in time-delay cosmography under the mass-sheet transformation. CHEN G.C.-F., FASSNACHT C.D., SUYU S.H., et al.
2021A&A...653A.109F 735       D     X C       16 78 ~ Microlensing of the broad emission lines in 27 gravitationally lensed quasars. Broad line region structure and kinematics. FIAN C., MEDIAVILLA E., MOTTA V., et al.
2021AJ....162..175O 18       D               1 7 ~ Multiple Mg II absorption systems in the lines of sight to quadruply lensed quasar H1413+1143. OKOSHI K., MINOWA Y., KASHIKAWA N., et al.
2021MNRAS.508..755C 45           X         1 7 ~ Point spread function reconstruction of adaptive-optics imaging: meeting the astrometric requirements for time-delay cosmography. CHEN G.C.-F., TREU T., FASSNACHT C.D., et al.
2021A&A...654A.155H 179           X         4 2 ~ Geometry and kinematics of the broad emission line region in the lensed quasar Q2237+0305. HUTSEMEKERS D. and SLUSE D.
2021MNRAS.508.4625H 18       D               1 12 ~ Using strong lensing to understand the microJy radio emission in two radio quiet quasars at redshift 1.7. HARTLEY P., JACKSON N., BADOLE S., et al.
2021MNRAS.508.5449D 421       D     X C       9 35 ~ Bayesian analysis of quasar light curves with a running optimal average: new time delay measurements of COSMOGRAIL gravitationally lensed quasars. DONNAN F.R., HORNE K. and HERNANDEZ SANTISTEBAN J.V.
2021A&A...656A.108M 45           X         1 9 ~ First black hole mass estimation for the quadruple lensed system WGD2038-4008. MELO A., MOTTA V., GODOY N., et al.
2022MNRAS.512.3163G 140           X   F     2 11 ~ The primordial matter power spectrum on sub-galactic scales. GILMAN D., BENSON A., BOVY J., et al.
2022A&A...659A.127V 47           X         1 8 ~ TDCOSMO. VII. Boxyness/discyness in lensing galaxies: Detectability and impact on H0. VAN DE VYVERE L., GOMER M.R., SLUSE D., et al.
2022MNRAS.513.2349C 121     A         F     2 9 ~ SHARP - VIII. J0924+0219 lens mass distribution and time-delay prediction through adaptive-optics imaging. CHEN G.C.-F., FASSNACHT C.D., SUYU S.H., et al.
2022ApJ...929..123E 19       D               1 34 ~ Abundance of LIGO/Virgo Black Holes from Microlensing Observations of Quasars with Reverberation Mapping Size Estimates. ESTEBAN-GUTIERREZ A., AGUES-PASZKOWSKY N., MEDIAVILLA E., et al.
2022MNRAS.514.1433W 19       D               1 7 ~ Constraints on interacting dark energy models from time-delay cosmography with seven lensed quasars. WANG L.-F., ZHANG J.-H., HE D.-Z., et al.
2022ApJ...934..108C 47           X         1 7 ~ A New Way to Explore Cosmological Tensions Using Gravitational Waves and Strong Gravitational Lensing. CAO M.-D., ZHENG J., QI J.-Z., et al.
2022ApJ...939...37L 47           X         1 6 ~ Revisiting the Hubble Constant, Spatial Curvature, and Cosmography with Strongly Lensed Quasar and Hubble Parameter Observations. LIU T., CAO S., BIESIADA M., et al.
2022A&A...666A..11P viz 19       D               1 16 ~ X-ray illuminated accretion discs and quasar microlensing disc sizes. PAPADAKIS I.E., DOVCIAK M. and KAMMOUN E.S.

goto View the references in ADSLimited to 100


2022.12.07-02:02:35

© Université de Strasbourg/CNRS

    • Contact