other query modes : |
Identifier query |
Coordinate query |
Criteria query |
Reference query |
Basic query |
Script submission |
TAP |
Output options |
Help |
CRTS CSS130912 J025702-001844 , the SIMBAD biblio (24 results) | C.D.S. - SIMBAD4 rel 1.8 - 2023.02.09CET00:36:23 |
Bibcode/DOI | Score |
in Title|Abstract| Keywords |
in a table | in teXt, Caption, ... | Nb occurence | Nb objects in ref |
Citations (from ADS) |
Title | First 3 Authors |
---|---|---|---|---|---|---|---|---|---|
2013ATel.5437....1D | 39 | X | 1 | 39 | 1 | CRTS Supernova Candidates. | DRAKE A.J., DJORGOVSKI S.G., MAHABAL A.A., et al. | ||
2017ApJ...835...58V ![]() |
3788 | K A | D | S X C | 91 | 14 | 27 | On the early-time excess emission in hydrogen-poor superluminous supernovae. | VREESWIJK P.M., LELOUDAS G., GAL-YAM A., et al. |
2017MNRAS.469.4705C | 83 | X | 2 | 6 | 6 | Spatially resolved analysis of superluminous supernovae PTF 11hrq and PTF 12dam host galaxies. | CIKOTA A., DE CIA A., SCHULZE S., et al. | ||
2017ApJ...848....6Y | 166 | X C | 3 | 23 | 26 | Hydrogen-poor superluminous supernovae with late-time Hα emission: three events from the intermediate Palomar Transient Factory. | YAN L., LUNNAN R., PERLEY D.A., et al. | ||
2017ApJ...850...55N | 99 | D | X | 3 | 41 | 37 | The magnetar model for Type I superluminous supernovae. I. Bayesian analysis of the full multicolor light-curve sample with MOSFiT. | NICHOLL M., GUILLOCHON J. and BERGER E. | |
2018ApJ...854..175I | 59 | D | X | 2 | 48 | 6 | A statistical approach to identify superluminous supernovae and probe their diversity. | INSERRA C., PRAJS S., GUTIERREZ C.P., et al. | |
2018ApJ...856...59L | 1530 | T A | S X C | 34 | 7 | 3 |
A multiple ejecta-circumstellar medium interaction model and its implications for superluminous supernovae iPTF15esb and iPTF13dcc. |
LIU L.-D., WANG L.-J., WANG S.-Q., et al. | |
2018ApJ...860..100D ![]() |
435 | D | X | 11 | 42 | 24 | Light curves of hydrogen-poor superluminous supernovae from the Palomar Transient Factory. | DE CIA A., GAL-YAM A., RUBIN A., et al. | |
2018ApJ...865....9B | 42 | X | 1 | 18 | 3 | The Type I superluminous supernova PS16aqv: lightcurve complexity and deep limits on radioactive ejecta in a fast event. | BLANCHARD P.K., NICHOLL M., BERGER E., et al. | ||
2018ApJ...865...95W | 84 | C | 1 | 5 | 3 | A fallback accretion model for the unusual Type II-P supernova iPTF14hls. | WANG L.J., WANG X.F., WANG S.Q., et al. | ||
2018ApJ...867..113M | 17 | D | 2 | 37 | ~ | Systematic investigation of the fallback accretion-powered model for hydrogen-poor superluminous supernovae. | MORIYA T.J., NICHOLL M. and GUILLOCHON J. | ||
2018ApJ...869..166V | 17 | D | 1 | 58 | ~ | Superluminous supernovae in LSST: rates, detection metrics, and light-curve modeling. | VILLAR V.A., NICHOLL M. and BERGER E. | ||
2018A&A...620A..67A | 125 | X C | 2 | 25 | ~ | A nearby super-luminous supernova with a long pre-maximum & "plateau" and strong C II features. | ANDERSON J.P., PESSI P.J., DESSART L., et al. | ||
2019MNRAS.489.1110W | 85 | X | 2 | 6 | ~ | Broad-lined type Ic supernova iPTF16asu: A challenge to all popular models. | WANG L.J., WANG X.F., CANO Z., et al. | ||
2020ApJ...891...98L | 131 | X | 3 | 16 | ~ | The energy sources of double-peaked superluminous supernova PS1-12cil and luminous supernova SN 2012aa. | LI L., WANG S.-Q., LIU L.-D., et al. | ||
2020ApJ...897..114B | 17 | D | 1 | 67 | ~ | The pre-explosion mass distribution of hydrogen-poor superluminous supernova progenitors and new evidence for a mass-spin correlation. | BLANCHARD P.K., BERGER E., NICHOLL M., et al. | ||
2020ApJ...901...61L ![]() |
44 | X | 1 | 27 | ~ | Four (super)luminous supernovae from the first months of the ZTF survey. | LUNNAN R., YAN L., PERLEY D.A., et al. | ||
2020ApJ...904...74G | 17 | D | 1 | 145 | ~ | FLEET: a redshift-agnostic machine learning pipeline to rapidly identify hydrogen-poor superluminous supernovae. | GOMEZ S., BERGER E., BLANCHARD P.K., et al. | ||
2020A&A...643A..47O | 17 | D | 2 | 93 | ~ | The interacting nature of dwarf galaxies hosting superluminous supernovae. | ORUM S.V., IVENS D.L., STRANDBERG P., et al. | ||
2021ApJ...909...24K | 18 | D | 1 | 93 | ~ | Photospheric velocity gradients and ejecta masses of hydrogen-poor superluminous supernovae: proxies for distinguishing between fast and slow events. | KONYVES-TOTH R. and VINKO J. | ||
2021ApJ...911..142L | 90 | C | 2 | 9 | ~ | Magnetar-driven shock breakout revisited and implications for double-peaked Type I superluminous supernovae. | LIU L.-D., GAO H., WANG X.-F., et al. | ||
2022ApJ...933...14H | 112 | D | C | 3 | 35 | ~ | Bumpy Declining Light Curves Are Common in Hydrogen-poor Superluminous Supernovae. | HOSSEINZADEH G., BERGER E., METZGER B.D., et al. | |
2022A&A...667A..92O | 112 | D | F | 2 | 25 | ~ | Supernova double-peaked light curves from double-nickel distribution. | ORELLANA M. and BERSTEN M.C. | |
2022ApJ...941..107G | 47 | X | 1 | 238 | ~ | Luminous Supernovae: Unveiling a Population between Superluminous and Normal Core-collapse Supernovae. | GOMEZ S., BERGER E., NICHOLL M., et al. |
© Université de Strasbourg/CNRS
• Contact