iPTF 13ajg , the SIMBAD biblio

iPTF 13ajg , the SIMBAD biblio (52 results) C.D.S. - SIMBAD4 rel 1.8 - 2022.12.01CET15:16:03


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2014ApJ...797...24V viz 4116 T K A S   X C       101 20 62 The hydrogen-poor superluminous supernova
iPTF 13ajg and its host galaxy in absorption and emission.
VREESWIJK P.M., SAVAGLIO S., GAL-YAM A., et al.
2015Natur.523..189G 15 8 126 A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst. GREINER J., MAZZALI P.A., KANN A., et al.
2015MNRAS.452.1567C 43           X         1 23 69 The host galaxy and late-time evolution of the superluminous supernova PTF12dam. CHEN T.-W., SMARTT S.J., JERKSTRAND A., et al.
2015MNRAS.452.3869N 137       D     X         4 55 86 On the diversity of superluminous supernovae: ejected mass as the dominant factor. NICHOLL M., SMARTT S.J., JERKSTRAND A., et al.
2016Sci...351..257D 89           X         2 12 102 ASASSN-15lh: A highly super-luminous supernova. DONG S., SHAPPEE B.J., PRIETO J.L., et al.
2016ApJ...818L...8S 86             C       1 7 39 DES14X3taz: a Type I superluminous supernova showing a luminous, rapidly cooling initial pre-peak bump. SMITH M., SULLIVAN M., D'ANDREA C.B., et al.
2016ApJ...818...77O 16       D               2 10 7 Quark-novae occurring in massive binaries : a universal energy source in superluminous supernovae with double-peaked light curves. OUYED R., LEAHY D. and KONING N.
2016ApJ...819...51L 82             C       1 18 20 Late time multi-wavelength observations of Swift J1644+5734: a luminous Optical/IR bump and quiescent X-ray emission. LEVAN A.J., TANVIR N.R., BROWN G.C., et al.
2016MNRAS.457L..79N 140       D     X   F     3 14 35 Seeing double: the frequency and detectability of double-peaked superluminous supernova light curves. NICHOLL M. and SMARTT S.J.
2016MNRAS.458.3455M 1604   K   D S   X C       38 10 47 Spectrum formation in superluminous supernovae (Type I). MAZZALI P.A., SULLIVAN M., PIAN E., et al.
2016MNRAS.460L..55M 16       D               1 23 10 Constraining the ellipticity of strongly magnetized neutron stars powering superluminous supernovae. MORIYA T.J. and TAURIS T.M.
2017ApJ...835L...8N 702           X C F     15 13 29 An ultraviolet excess in the superluminous supernova Gaia16apd reveals a powerful central engine. NICHOLL M., BERGER E., MARGUTTI R., et al.
2017ApJ...835...58V viz 742           X C       17 14 27 On the early-time excess emission in hydrogen-poor superluminous supernovae. VREESWIJK P.M., LELOUDAS G., GAL-YAM A., et al.
2017MNRAS.464.3568P 635       D     X C F     14 25 31 The volumetric rate of superluminous supernovae at z ∼ 1. PRAJS S., SULLIVAN M., SMITH M., et al.
2017ApJ...840...12Y 16       D               3 38 21 A statistical study of superluminous supernovae using the magnetar engine model and implications for their connection with gamma-ray bursts and hypernovae. YU Y.-W., ZHU J.-P., LI S.-Z., et al.
2017ApJ...840...57Y 124           X         3 22 33 Far-ultraviolet to near-infrared spectroscopy of a nearby hydrogen-poor superluminous supernova Gaia16apd. YAN L., QUIMBY R., GAL-YAM A., et al.
2017A&A...602A...9C 207           X         5 25 28 The evolution of superluminous supernova LSQ14mo and its interacting host galaxy system. CHEN T.-W., NICHOLL M., SMARTT S.J., et al.
2017MNRAS.468.4642I 41           X         1 35 26 Complexity in the light curves and spectra of slow-evolving superluminous supernovae. INSERRA C., NICHOLL M., CHEN T.-W., et al.
2017ApJ...845...85L viz 99       D       C       2 47 35 Analyzing the largest spectroscopic data set of hydrogen-poor super-luminous supernovae. LIU Y.-Q., MODJAZ M. and BIANCO F.B.
2017MNRAS.470.4241P 330           X C F     6 6 8 DES15E2mlf: a spectroscopically confirmed superluminous supernova that exploded 3.5 Gyr after the big bang. PAN Y.-C., FOLEY R.J., SMITH M., et al.
2017ApJ...850...55N 16       D               2 41 37 The magnetar model for Type I superluminous supernovae. I. Bayesian analysis of the full multicolor light-curve sample with MOSFiT. NICHOLL M., GUILLOCHON J. and BERGER E.
2016ATel.8952....1C 41           X         1 6 1 Classification of 5 DES supernovae by MMT. CHALLIS P., KIRSHNER R., MANDEL K., et al.
2018ApJ...852...81L viz 84             C       1 32 24 Hydrogen-poor superluminous supernovae from the Pan-STARRS1 Medium Deep Survey. LUNNAN R., CHORNOCK R., BERGER E., et al.
2018MNRAS.473.1258S 100       D     X         3 75 37 Cosmic evolution and metal aversion in superluminous supernova host galaxies. SCHULZE S., KRUHLER T., LELOUDAS G., et al.
2018MNRAS.474..573O 101       D     X         3 9 9 Radio emission from embryonic superluminous supernova remnants. OMAND C.M.B., KASHIYAMA K. and MURASE K.
2018A&A...609A..83I 85             C       1 3 5 Euclid: Superluminous supernovae in the Deep Survey. INSERRA C., NICHOL R.C., SCOVACRICCHI D., et al.
2018ApJ...854...37S 418           X C       9 13 5 Studying the ultraviolet spectrum of the first spectroscopically confirmed Supernova at redshift two. SMITH M., SULLIVAN M., NICHOL R.C., et al.
2018ApJ...854..175I 17       D               1 48 6 A statistical approach to identify superluminous supernovae and probe their diversity. INSERRA C., PRAJS S., GUTIERREZ C.P., et al.
2018ApJ...855....2Q 59       D     X         2 63 10 Spectra of hydrogen-poor superluminous supernovae from the Palomar Transient Factory. QUIMBY R.M., DE CIA A., GAL-YAM A., et al.
2018A&A...611A..45R 84           X         2 47 6 Search for γ-ray emission from superluminous supernovae with the Fermi-LAT. RENAULT-TINACCI N., KOTERA K., NERONOV A., et al.
2018ApJ...858...91Y 878   K A D     X         22 9 5 Far-UV HST spectroscopy of an unusual hydrogen-poor superluminous supernova: SN2017egm. YAN L., PERLEY D.A., DE CIA A., et al.
2018ApJ...860..100D viz 560       D     X         14 42 24 Light curves of hydrogen-poor superluminous supernovae from the Palomar Transient Factory. DE CIA A., GAL-YAM A., RUBIN A., et al.
2018NatAs...2..887L 14 ~ A UV resonance line echo from a shell around a hydrogen-poor superluminous supernova. LUNNAN R., FRANSSON C., VREESWIJK P.M., et al.
2018ApJ...867..113M 17       D               2 37 ~ Systematic investigation of the fallback accretion-powered model for hydrogen-poor superluminous supernovae. MORIYA T.J., NICHOLL M. and GUILLOCHON J.
2016ATel.9700....1G 41           X         1 2 ~ Classification of DES16C2nm as a SLSN at z=1.998 . GALBANY L., D'ANDREA C., PRAJS S., et al.
2018ApJ...869..166V 17       D               1 58 ~ Superluminous supernovae in LSST: rates, detection metrics, and light-curve modeling. VILLAR V.A., NICHOLL M. and BERGER E.
2019MNRAS.482.1545S viz 102       D         F     2 320 ~ The Berkeley sample of stripped-envelope supernovae. SHIVVERS I., FILIPPENKO A.V., SILVERMAN J.M., et al.
2019ApJ...874...68C 60       D     X         2 32 ~ A systematic study of superluminous supernova light-curve models using clustering. CHATZOPOULOS E. and TUMINELLO R.
2019ApJ...882..102G 128           X C       2 11 ~ A simple analysis of Type I superluminous supernova peak spectra: composition, expansion velocities, and dynamics. GAL-YAM A.
2018ATel11790....1B 42           X         1 4 ~ UV Spectroscopy of the Superluminous Supernova SN2018bsz. BLANCHARD P., NICHOLL M., CHORNOCK R., et al.
2020ApJ...897..114B 17       D               1 67 ~ The pre-explosion mass distribution of hydrogen-poor superluminous supernova progenitors and new evidence for a mass-spin correlation. BLANCHARD P.K., BERGER E., NICHOLL M., et al.
2020ApJ...904...74G 17       D               1 145 ~ FLEET: a redshift-agnostic machine learning pipeline to rapidly identify hydrogen-poor superluminous supernovae. GOMEZ S., BERGER E., BLANCHARD P.K., et al.
2020A&A...643A..47O 17       D               1 93 ~ The interacting nature of dwarf galaxies hosting superluminous supernovae. ORUM S.V., IVENS D.L., STRANDBERG P., et al.
2021ApJ...909...24K 18       D               2 93 ~ Photospheric velocity gradients and ejecta masses of hydrogen-poor superluminous supernovae: proxies for distinguishing between fast and slow events. KONYVES-TOTH R. and VINKO J.
2021MNRAS.502.1678K 269           X C       5 51 ~ SN 2020ank: a bright and fast-evolving H-deficient superluminous supernova. KUMAR A., KUMAR B., PANDEY S.B., et al.
2021ApJ...908..249M 45           X         1 8 ~ Constraints on the rate of supernovae lasting for more than a year from Subaru/Hyper Suprime-Cam. MORIYA T.J., JIANG J.-A., YASUDA N., et al.
2021MNRAS.504.2535I 18       D               1 31 ~ The first Hubble diagram and cosmological constraints using superluminous supernovae. INSERRA C., SULLIVAN M., ANGUS C.R., et al.
2021MNRAS.508.4342P 45           X         1 26 ~ Transitional events in the spectrophotometric regime between stripped envelope and superluminous supernovae. PRENTICE S.J., INSERRA C., SCHULZE S., et al.
2019ATel12604....1C 43           X         1 5 ~ GREAT followup of SN 2019cca/ZTF19aajwogx: a superluminous supernova at redshift 0.42. CHEN T.-W., SCHWEYER T., INSERRA C., et al.
2022ApJ...925..211M 187           X C       3 2 ~ Discovering Supernovae at the Epoch of Reionization with the Nancy Grace Roman Space Telescope. MORIYA T.J., QUIMBY R.M. and ROBERTSON B.E.
2022ApJ...931..153S 19       D               1 84 ~ Constraints on the Explosion Timescale of Core-collapse Supernovae Based on Systematic Analysis of Light Curves. SAITO S., TANAKA M., SAWADA R., et al.
2022ApJ...933...14H 19       D               1 35 ~ Bumpy Declining Light Curves Are Common in Hydrogen-poor Superluminous Supernovae. HOSSEINZADEH G., BERGER E., METZGER B.D., et al.

goto View the references in ADS


2022.12.01-15:16:03

© Université de Strasbourg/CNRS

    • Contact