other query modes : |
Identifier query |
Coordinate query |
Criteria query |
Reference query |
Basic query |
Script submission |
TAP |
Output options |
Help |
Kepler-1090 , the SIMBAD biblio (29 results) | C.D.S. - SIMBAD4 rel 1.8 - 2023.03.27CEST03:40:45 |
Bibcode/DOI | Score |
in Title|Abstract| Keywords |
in a table | in teXt, Caption, ... | Nb occurence | Nb objects in ref |
Citations (from ADS) |
Title | First 3 Authors |
---|---|---|---|---|---|---|---|---|---|
2012ApJ...756..185F ![]() |
16 | D | 1 | 1856 | 44 | Transit timing observations from Kepler. V. Transit timing variation candidates in the first sixteen months from polynomial models. | FORD E.B., RAGOZZINE D., ROWE J.F., et al. | ||
2013ApJS..204...24B ![]() |
16 | D | 1 | 3274 | 779 | Planetary candidates observed by Kepler. III. Analysis of the first 16 months of data. | BATALHA N.M., ROWE J.F., BRYSON S.T., et al. | ||
2013ApJ...775L..11M ![]() |
16 | D | 1 | 2010 | 107 | Stellar rotation periods of the Kepler Objects of Interest: a dearth of close-in planets around fast rotators. | McQUILLAN A., MAZEH T. and AIGRAIN S. | ||
2013ApJS..208...16M ![]() |
16 | D | 1 | 1518 | 92 | Transit timing observations from Kepler. VIII. Catalog of transit timing measurements of the first twelve quarters. | MAZEH T., NACHMANI G., HOLCZER T., et al. | ||
2013MNRAS.436.1883W ![]() |
16 | D | 1 | 961 | 86 | Rotation periods, variability properties and ages for Kepler exoplanet candidate host stars. | WALKOWICZ L.M. and BASRI G.S. | ||
2013A&A...560A...4R ![]() |
16 | D | 1 | 24132 | 153 | Rotation and differential rotation of active Kepler stars. | REINHOLD T., REINERS A. and BASRI G. | ||
2014ApJS..210...19B ![]() |
16 | D | 1 | 5860 | 162 | Planetary candidates observed by Kepler IV: planet sample from Q1-Q8 (22 months). | BURKE C.J., BRYSON S.T., MULLALLY F., et al. | ||
2014AJ....147..119C ![]() |
16 | D | 1 | 8008 | 55 | Contamination in the Kepler field. Identification of 685 KOIs as false positives via ephemeris matching based on Q1-Q12 data. | COUGHLIN J.L., THOMPSON S.E., BRYSON S.T., et al. | ||
2015ApJ...801....3M ![]() |
16 | D | 1 | 3357 | 52 | Photometric amplitude distribution of stellar rotation of KOIs–Indication for spin-orbit alignment of cool stars and high obliquity for hot stars. | MAZEH T., PERETS H.B., McQUILLAN A., et al. | ||
2015ApJS..217...16R ![]() |
16 | D | 1 | 8625 | 84 | Planetary candidates observed by Kepler. V. Planet sample from Q1-Q12 (36 months). | ROWE J.F., COUGHLIN J.L., ANTOCI V., et al. | ||
2015ApJ...807..170H ![]() |
16 | D | 2 | 2117 | 10 | Time variation of Kepler transits induced by stellar Spots–A way to distinguish between prograde and retrograde motion. II. Application to KOIs. | HOLCZER T., SHPORER A., MAZEH T., et al. | ||
2015ApJ...809....8B ![]() |
16 | D | 1 | 112329 | 139 | Terrestrial planet occurrence rates for the Kepler GK dwarf sample. | BURKE C.J., CHRISTIANSEN J.L., MULLALLY F., et al. | ||
2015ApJ...814..130M ![]() |
16 | D | 2 | 2846 | 46 | An increase in the mass of planetary systems around lower-mass stars. | MULDERS G.D., PASCUCCI I. and APAI D. | ||
2016ApJ...822...86M ![]() |
16 | D | 1 | 6129 | 192 | False positive probabilities for all Kepler objects of interest: 1284 newly validated planets and 428 likely false positives. | MORTON T.D., BRYSON S.T., COUGHLIN J.L., et al. | ||
2016ApJS..225....9H ![]() |
16 | D | 2 | 2132 | 33 | Transit timing observations from Kepler. IX. Catalog of the full long-cadence data set. | HOLCZER T., MAZEH T., NACHMANI G., et al. | ||
2017AJ....153...66Z ![]() |
16 | D | 1 | 1663 | 31 | Robo-AO Kepler Planetary Candidate Survey. III. Adaptive optics imaging of 1629 Kepler exoplanet candidate host stars. | ZIEGLER C., LAW N.M., MORTON T., et al. | ||
2017AJ....153...71F ![]() |
16 | D | 1 | 3575 | 46 | The Kepler follow-up observation program. I. A catalog of companions to Kepler stars from high-resolution imaging. | FURLAN E., CIARDI D.R., EVERETT M.E., et al. | ||
2017MNRAS.465.2634A ![]() |
16 | D | 2 | 5400 | 9 | Transit shapes and self-organizing maps as a tool for ranking planetary candidates: application to Kepler and K2. | ARMSTRONG D.J., POLLACCO D. and SANTERNE A. | ||
2016PASP..128g4502M ![]() |
16 | D | 1 | 305 | 14 | Identifying false alarms in the Kepler planet candidate catalog. | MULLALLY F., COUGHLIN J.L., THOMPSON S.E., et al. | ||
2017AJ....154..107P ![]() |
16 | D | 1 | 1306 | 56 | The California-Kepler Survey. I. High-resolution spectroscopy of 1305 stars hosting Kepler transiting planets. | PETIGURA E.A., HOWARD A.W., MARCY G.W., et al. | ||
2017AJ....154..108J ![]() |
16 | D | 1 | 3237 | 46 | The California-Kepler Survey. II. Precise physical properties of 2025 Kepler planets and their host stars. | JOHNSON J.A., PETIGURA E.A., FULTON B.J., et al. | ||
2017A&A...603A..30S ![]() |
16 | D | 2 | 2500 | 14 | Observational evidence for two distinct giant planet populations. | SANTOS N.C., ADIBEKYAN V., FIGUEIRA P., et al. | ||
2018ApJS..234....9O ![]() |
17 | D | 1 | 436 | 4 | A spectral approach to transit timing variations. | OFIR A., XIE J.-W., JIANG C.-F., et al. | ||
2018ApJ...855..115B ![]() |
17 | D | 1 | 1305 | 2 | Identifying young Kepler planet host stars from Keck-HIRES spectra of lithium. | BERGER T.A., HOWARD A.W. and BOESGAARD A.M. | ||
2018ApJ...861..149F ![]() |
17 | D | 1 | 2261 | ~ | The Kepler Follow-up Observation Program. II. Stellar parameters from medium- and high-resolution spectroscopy. | FURLAN E., CIARDI D.R., COCHRAN W.D., et al. | ||
2018ApJ...866...99B ![]() |
17 | D | 1 | 7129 | 101 | Revised radii of Kepler stars and planet's using Gaia Data Release 2. | BERGER T.A., HUBER D., GAIDOS E., et al. | ||
2019AJ....157..143B ![]() |
17 | D | 1 | 423 | ~ | Re-evaluating small long-period confirmed planets from Kepler. | BURKE C.J., MULLALLY F., THOMPSON S.E., et al. | ||
2019ApJ...875...29M ![]() |
17 | D | 1 | 2918 | ~ | A spectroscopic analysis of the California-Kepler Survey sample. I. Stellar parameters, planetary radii, and a slope in the radius gap. | MARTINEZ C.F., CUNHA K., GHEZZI L., et al. | ||
2020ApJ...890...23L ![]() |
17 | D | 2 | 4935 | ~ | Current population statistics do not favor photoevaporation over core-powered mass loss as the dominant cause of the exoplanet radius gap. | LOYD R.O.P., SHKOLNIK E.L., SCHNEIDER A.C., et al. |
© Université de Strasbourg/CNRS
• Contact