other query modes : |
Identifier query |
Coordinate query |
Criteria query |
Reference query |
Basic query |
Script submission |
TAP |
Output options |
Help |
SN 2013ej , the SIMBAD biblio (185 results) | C.D.S. - SIMBAD4 rel 1.8 - 2023.10.01CEST06:48:23 |
Bibcode/DOI | Score |
in Title|Abstract| Keywords |
in a table | in teXt, Caption, ... | Nb occurence | Nb objects in ref |
Citations (from ADS) |
Title | First 3 Authors |
---|---|---|---|---|---|---|---|---|---|
2014MNRAS.437.1337G | 79 | X | 2 | 27 | 7 | Parameters of the brightest star formation regions in the two principal spiral arms of NGC 628. | GUSEV A.S., EGOROV O.V. and SAKHIBOV F. | ||
2014MNRAS.438L.101V ![]() |
1871 | T K A | D | X C F | 45 | 13 | 127 |
The first month of evolution of the slow-rising Type IIP SN 2013ej in M74. |
VALENTI S., SAND D., PASTORELLO A., et al. |
2014MNRAS.439L..56F | 1275 | T K A | D | X C F | 30 | 6 | 48 |
On the progenitor of the Type IIP SN 2013ej in M74. |
FRASER M., MAUND J.R., SMARTT S.J., et al. |
2014ApJ...792...52S | 898 | K A | X C | 22 | 13 | ~ | The tip of the red giant branch distance to the perfect spiral galaxy M74 hosting three core-collapse supernovae. | SUNG JANG I. and LEE M.G. | |
2014MNRAS.442..844F ![]() |
81 | X | 2 | 32 | 135 | Photometric and spectroscopic properties of Type II-P supernovae. | FARAN T., POZNANSKI D., FILIPPENKO A.V., et al. | ||
2014ApJ...795..142G ![]() |
16 | D | 1 | 448 | 7 | Defining photometric peculiar type Ia supernovae. | GONZALEZ-GAITAN S., HSIAO E.Y., PIGNATA G., et al. | ||
2014AJ....148..107R | 413 | D | X C | 10 | 104 | 44 | Photospheric magnitude diagrams for Type II supernovae: a promising tool to compute distances. | RODRIGUEZ O., CLOCCHIATTI A. and HAMUY M. | |
2014A&A...572A..38G | 16 | D | O | 1 | 176 | 95 | Nearby supernova host galaxies from the CALIFA Survey. I. Sample, data analysis, and correlation to star-forming regions. | GALBANY L., STANISHEV V., MOURAO A.M., et al. | |
2015MNRAS.448.2608V ![]() |
18 | D | 2 | 21 | 53 | Supernova 2013by: a Type IIL supernova with a IIP-like light-curve drop. | VALENTI S., SAND D., STRITZINGER M., et al. | ||
2015ApJ...806..160B | 4417 | T K A | D | S X C | 108 | 23 | 61 |
SN 2013ej: a Type IIL supernova with weak signs of interaction. |
BOSE S., SUTARIA F., KUMAR B., et al. |
2015A&A...579A..40S ![]() |
85 | F | 1 | 49 | 256 | PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects. | SMARTT S.J., VALENTI S., FRASER M., et al. | ||
2013ATel.5228....1V | 118 | T | X | 2 | 3 | 3 |
Spectroscopic classification for PSN J01364816+1545310 in M74 with FLOYDS at Faulkes Telescope South. |
VALENTI S., SAND D., HOWELL D.A., et al. | |
2013ATel.5229....1V | 118 | T | X | 2 | 4 | 2 |
The probable progenitor of PSN J01364816+1545310 in M 74. |
VAN DYK S.D., PETIGURA E.A., CENKO S.B., et al. | |
2013ATel.5230....1K | 118 | T | X | 2 | 2 | 2 |
Possible Spitzer counterpart of PSN J01364816+1545310. |
KHAN R. | |
2013ATel.5237....1S | 276 | T | X | 6 | 2 | 7 |
Pre-explosion ASAS-SN V-Band Upper-Limits on SN 2013ej ( PSN J01364816+1545310). |
SHAPPEE B.J., KOCHANEK C.S., STANEK K.Z., et al. | |
2013ATel.5243....1M | 275 | T | X | 6 | 4 | 5 | Swift XRT and UVOT detection of SN 2013ej. | MARGUTTI R., CHAKRABORTI S., BROWN P.J., et al. | |
2013ATel.5264....1S | 157 | T | X | 3 | 4 | 5 | Medicina-Noto VLBI observation of SN 2013ej. | SOKOLOVSKY K., GIROLETTI M., STAGNI M., et al. | |
2013ATel.5275....1L | 276 | T | X | 6 | 3 | 11 |
SN 2013ej is a highly polarized Type II-Plateau Supernova. |
LEONARD D.C., PIGNATA G., DESSART L., et al. | |
2015MNRAS.450.3289G | 42 | X | 1 | 42 | 125 | The search for failed supernovae with the Large Binocular Telescope: first candidates. | GERKE J.R., KOCHANEK C.S. and STANEK K.Z. | ||
2013ATel.5466....1L | 199 | T | X | 4 | 2 | 8 |
Early Photometry of the Type IIP supernova SN 2013ej. |
LEE M., LI K.L., WANG J.-W., et al. | |
2015ApJ...807...59H | 4160 | T K A | S X C | 101 | 14 | 36 |
SN 2013ej in M74: a luminous and fast-declining type II-P supernova. |
HUANG F., WANG X., ZHANG J., et al. | |
2015A&A...582A...3G | 56 | D | X | 2 | 68 | 45 | A comparative study of Type II-P and II-L supernova rise times as exemplified by the case of LSQ 13cuw. | GALL E.E.E., POLSHAW J., KOTAK R., et al. | |
2016A&A...585A..19B ![]() |
42 | X | 1 | 5 | 7 | Evidence for rapid variability in the optical light curve of the Type Ia SN 2014J. | BONANOS A.Z. and BOUMIS P. | ||
2016ApJ...817...22C | 1043 | T K A | S X C | 23 | 7 | 25 |
Probing final stages of stellar evolution with X-ray observations of SN 2013ej. |
CHAKRABORTI S., RAY A., SMITH R., et al. | |
2016AJ....151...33G ![]() |
16 | D | 1 | 168 | 81 | UBVRIz light curves of 51 Type II supernovae. | GALBANY L., HAMUY M., PHILLIPS M.M., et al. | ||
2016MNRAS.455.2712B | 707 | D | X C F | 16 | 40 | 3 | Photometric and polarimetric observations of fast declining Type II supernovae 2013hj and 2014G. | BOSE S., KUMAR B., MISRA K., et al. | |
2016MNRAS.456.2848H ![]() |
16 | D | 1 | 919 | 37 | Supernovae and their host galaxies - III. The impact of bars and bulges on the radial distribution of supernovae in disc galaxies. | HAKOBYAN A.A., KARAPETYAN A.G., BARKHUDARYAN L.V., et al. | ||
2016MNRAS.456.3157K | 2071 | T K A | D | X C | 50 | 39 | 8 | Broad-band polarimetric investigation of the Type II-plateau supernova 2013ej. | KUMAR B., PANDEY S.B., ESWARAIAH C., et al. |
2016ApJ...819...35A ![]() |
207 | X C | 4 | 28 | 115 | Rapidly rising transients in the supernova-superluminous supernova gap. | ARCAVI I., WOLF W.M., HOWELL D.A., et al. | ||
2016ApJ...820...33R ![]() |
41 | X | 1 | 70 | 56 | Type II supernova energetics and comparison of light curves to shock-cooling models. | RUBIN A., GAL-YAM A., DE CIA A., et al. | ||
2016ApJ...822....6D | 4753 | T K A | D | X C | 116 | 23 | 37 | Extensive spectroscopy and photometry of the Type IIP supernova 2013ej. | DHUNGANA G., KEHOE R., VINKO J., et al. |
2016ApJ...823..127N | 17 | D | 1 | 25 | 27 | The importance of 56Ni in shaping the light curves of type II supernovae. | NAKAR E., POZNANSKI D. and KATZ B. | ||
2016A&A...589A..53N | 422 | D | X C | 10 | 18 | 16 | A two-component model for fitting light curves of core-collapse supernovae. | NAGY A.P. and VINKO J. | |
2016A&A...591A..48G | 16 | D | 1 | 271 | 66 | Nearby supernova host galaxies from the CALIFA survey. II. Supernova environmental metallicity. | GALBANY L., STANISHEV V., MOURAO A.M., et al. | ||
2016ApJ...826L...3T | 44 | X | 1 | 4 | 13 | Terrestrial effects of nearby supernovae in the early pleistocene. | THOMAS B.C., ENGLER E.E., KACHELRIESS M., et al. | ||
2016ApJ...826L..29C | 45 | X | 1 | 8 | 32 | A DECam search for an optical counterpart to the LIGO gravitational-wave event GW151226. | COWPERTHWAITE P.S., BERGER E., SOARES-SANTOS M., et al. | ||
2016MNRAS.459.3939V ![]() |
748 | K | D | X C F | 17 | 210 | 225 | The diversity of Type II supernova versus the similarity in their progenitors. | VALENTI S., HOWELL D.A., STRITZINGER M.D., et al. |
2016MNRAS.461.2003Y ![]() |
4468 | T K A | D | X C F | 108 | 18 | 32 |
450 d of Type II SN 2013ej in optical and near-infrared. |
YUAN F., JERKSTRAND A., VALENTI S., et al. |
2016MNRAS.461.3296N ![]() |
41 | X | 1 | 355 | 95 | Multimessenger signals of long-term core-collapse supernova simulations: synergetic observation strategies. | NAKAMURA K., HORIUCHI S., TANAKA M., et al. | ||
2016MNRAS.462..137T | 286 | X C | 6 | 14 | 29 | The multifaceted Type II-L supernova 2014G from pre-maximum to nebular phase. | TERRERAN G., JERKSTRAND A., BENETTI S., et al. | ||
2016ApJ...832..139H | 245 | X C | 5 | 14 | 16 | Optical and ultraviolet observations of the very young Type IIP SN 2014cx in NGC 337. | HUANG F., WANG X., ZAMPIERI L., et al. | ||
2016ApJ...833..231T | 179 | D | X C | 4 | 103 | 50 | A systematic study of mid-infrared emission from core-collapse supernovae with SPIRITS. | TINYANONT S., KASLIWAL M.M., FOX O.D., et al. | |
2017ApJ...834..118M | 3401 | T K A | S X C | 80 | 22 | 35 | Asphericity, interaction, and dust in the type II-P/II-L supernova 2013EJ in Messier 74. | MAUERHAN J.C., VAN DYK S.D., JOHANSSON J., et al. | |
2017ApJ...834..174K | 41 | X | 1 | 100 | 17 | A revised planetary nebula luminosity function distance to NGC 628 using MUSE. | KRECKEL K., GROVES B., BIGIEL F., et al. | ||
2017ApJ...835...64G | 19 | D | 1 | 91 | 351 | An open catalog for supernova data. | GUILLOCHON J., PARRENT J., KELLEY L.Z., et al. | ||
2017ApJ...836L..12T | 88 | C | 1 | 9 | 58 | The progenitor and early evolution of the Type IIb SN 2016gkg. | TARTAGLIA L., FRASER M., SAND D.J., et al. | ||
2017ApJ...838...28M | 1357 | K | D | S X C | 31 | 6 | 140 | Unifying Type II supernova light curves with dense circumstellar material. | MOROZOVA V., PIRO A.L. and VALENTI S. |
2017ApJ...839L...6S | 43 | X | 1 | 3 | 7 | The magnetar model of the superluminous supernova Gaia16apd and the explosion jet feedback mechanism. | SOKER N. | ||
2017MNRAS.464.3013P | 222 | D | X C F | 4 | 30 | 11 | Radiation-hydrodynamical modelling of underluminous Type II plateau supernovae. | PUMO M.L., ZAMPIERI L., SPIRO S., et al. | |
2017ApJ...840..105M | 42 | X | 1 | 4 | 4 | A supernova at 50 pc: effects on the Earth's atmosphere and biota. | MELOTT A.L., THOMAS B.C., KACHELRIESS M., et al. | ||
2017ApJ...841...64Z | 41 | X | 1 | 40 | 13 | Discovery and follow-up observations of the young Type Ia supernova 2016coj. | ZHENG W., FILIPPENKO A.V., MAUERHAN J., et al. | ||
2017ApJ...841..127M | 266 | D | X C | 6 | 26 | 80 | The nickel mass distribution of normal Type II supernovae. | MULLER T., PRIETO J.L., PEJCHA O., et al. | |
2017MNRAS.467.3347K | 536 | A | D | X C F | 12 | 13 | 22 | Supernova progenitors, their variability and the Type IIP Supernova ASASSN-16fq in M66. | KOCHANEK C.S., FRASER M., ADAMS S.M., et al. |
2017AJ....154...51M | 20 | D | 2 | 17 | 73 | Accurate distances to important spiral galaxies: M63, M74, NGC 1291, NGC 4559, NGC 4625, and NGC 5398. | McQUINN K.B.W., SKILLMAN E.D., DOLPHIN A.E., et al. | ||
2017ApJ...846...37U | 41 | X | 1 | 11 | 6 | Light-curve analysis of ordinary Type IIP supernovae based on neutrino-driven explosion simulations in three dimensions. | UTROBIN V.P., WONGWATHANARAT A., JANKA H.-Th., et al. | ||
2017MNRAS.469.1445A | 141 | D | X | 4 | 52 | 91 | The search for failed supernovae with the Large Binocular Telescope: constraints from 7 yr of data. | ADAMS S.M., KOCHANEK C.S., GERKE J.R., et al. | |
2017MNRAS.469.2202M | 387 | D | S X C | 8 | 30 | 28 | The resolved stellar populations around 12 Type IIP supernovae. | MAUND J.R. | |
2017ApJ...848....5B | 387 | D | X C | 9 | 20 | ~ | The transition of a Type IIL supernova into a supernova remnant: late-time observations of SN 2013by. | BLACK C.S., MILISAVLJEVIC D., MARGUTTI R., et al. | |
2017ApJ...848L..26S | 166 | C F | 2 | 19 | 22 | The unprecedented properties of the first electromagnetic counterpart to a gravitational-wave source. | SIEBERT M.R., FOLEY R.J., DROUT M.R., et al. | ||
2017ApJ...849..109P | 82 | F | 1 | 26 | 12 | The impact of progenitor mass loss on the dynamical and spectral evolution of supernova remnants. | PATNAUDE D.J., LEE S.-H., SLANE P.O., et al. | ||
2017ApJ...851...95S | 42 | X | 1 | 24 | 24 | Magnetar-powered superluminous supernovae must first be exploded by jets. | SOKER N. and GILKIS A. | ||
2017ApJ...851..138D | 601 | K A | X C | 14 | 4 | 2 | Modeling Type II-P/II-L supernovae interacting with recent episodic mass ejections from their presupernova stars with MESA and SNEC. | DAS S. and RAY A. | |
2017MNRAS.471.4047A | 41 | X | 1 | 25 | 6 | Optical and IR observations of SN 2013L, a Type IIn Supernova surrounded by asymmetric CSM. | ANDREWS J.E., SMITH N., McCULLY C., et al. | ||
2017MNRAS.472.5004U | 1910 | T K | D | X C F | 44 | 15 | 5 |
Luminous Type IIP SN 2013ej with high-velocity 56Ni ejecta. |
UTROBIN V.P. and CHUGAI N.N. |
2018MNRAS.473..513F | 184 | D | C F | 9 | 29 | 10 | The evolution of temperature and bolometric luminosity in Type II supernovae. | FARAN T., NAKAR E. and POZNANSKI D. | |
2018ApJ...853...62T ![]() |
86 | X | 2 | 30 | 88 | The early detection and follow-up of the highly obscured Type II supernova 2016ija/DLT16am. | TARTAGLIA L., SAND D.J., VALENTI S., et al. | ||
2018ApJ...855..107G ![]() |
17 | D | 2 | 285 | 86 | PISCO: the PMAS/PPak Integral-field Supernova hosts COmpilation. | GALBANY L., ANDERSON J.P., SANCHEZ S.F., et al. | ||
2018MNRAS.474.2116D | 143 | D | X | 4 | 58 | 97 | The initial masses of the red supergiant progenitors to Type II supernovae. | DAVIES B. and BEASOR E.R. | |
2018MNRAS.475.1104B | 42 | X | 1 | 28 | 8 | SN2012ab: a peculiar Type IIn supernova with aspherical circumstellar material. | BILINSKI C., SMITH N., WILLIAMS G.G., et al. | ||
2018MNRAS.475.3959H | 920 | A | D | X C F | 21 | 26 | 18 | SN 2016X: a type II-P supernova with a signature of shock breakout from explosion of a massive red supergiant. | HUANG F., WANG X.-F., HOSSEINZADEH G., et al. |
2018MNRAS.476.1497B | 502 | X C F | 10 | 31 | 9 | SN 2013fs and SN 2013fr: exploring the circumstellar-material diversity in Type II supernovae. | BULLIVANT C., SMITH N., WILLIAMS G.G., et al. | ||
2018ApJ...858...15M | 146 | D | X | 4 | 23 | 111 | Measuring the progenitor masses and dense circumstellar material of Type II supernovae. | MOROZOVA V., PIRO A.L. and VALENTI S. | |
2018MNRAS.476.4592D | 42 | X | 1 | 75 | 11 | Observed Type II supernova colours from the Carnegie Supernova Project-I. | DE JAEGER T., ANDERSON J.P., GALBANY L., et al. | ||
2018MNRAS.477...74A | 170 | X C | 3 | 18 | 69 | Strong late-time circumstellar interaction in the peculiar supernova iPTF14hls. | ANDREWS J.E. and SMITH N. | ||
2018ApJ...862..107B | 167 | X C | 3 | 26 | 7 | ASASSN-15nx: a luminous Type II supernova with a "perfect" linear decline. | BOSE S., DONG S., KOCHANEK C.S., et al. | ||
2018NatAs...2..574A | 1 | 12 | 16 | The lowest-metallicity type II supernova from the highest-mass red supergiant progenitor. | ANDERSON J.P., DESSART L., GUTIERREZ C.P., et al. | ||||
2018MNRAS.478.3776D | 309 | D | X C | 7 | 13 | 8 | SN 2016esw: a luminous Type II supernova observed within the first day after the explosion. | DE JAEGER T., GALBANY L., GUTIERREZ C.P., et al. | |
2018ApJ...863...20J | 167 | X C | 3 | 60 | 5 | SPIRITS 16tn in NGC 3556: a heavily obscured and low-luminosity supernova at 8.8 Mpc. | JENCSON J.E., KASLIWAL M.M., ADAMS S.M., et al. | ||
2018ApJ...863..163N ![]() |
59 | D | X | 2 | 24 | ~ | Long-term behavior of a Type IIP supernova SN 2004dj in the radio bands. | NAYANA A.J., CHANDRA P. and RAY A.K. | |
2018MNRAS.473.3863L | 100 | D | F | 3 | 83 | 13 | Progenitors of low-luminosity Type II-Plateau supernovae. | LISAKOV S.M., DESSART L., HILLIER D.J., et al. | |
2018ApJ...867....4M | 2491 | T A | S X C | 57 | 6 | 5 |
Theoretical X-ray light curves of young SNe. II. The example of SN 2013ej. |
MOROZOVA V. and STONE J.M. | |
2018MNRAS.480.1696J | 518 | K | D | S X C | 11 | 18 | 13 | The quiescent progenitors of four Type II-P/L supernovae. | JOHNSON S.A., KOCHANEK C.S. and ADAMS S.M. |
2018MNRAS.480.2475S | 476 | D | X | 12 | 58 | 8 | ASASSN-14dq: a fast-declining Type II-P supernova in a low-luminosity host galaxy. | SINGH A., SRIVASTAV S., KUMAR B., et al. | |
2018MNRAS.481..566K ![]() |
17 | D | 1 | 365 | 4 | The impact of spiral density waves on the distribution of supernovae. | KARAPETYAN A.G., HAKOBYAN A.A., BARKHUDARYAN L.V., et al. | ||
2018MNRAS.481.2536K | 42 | X | 1 | 20 | 14 | The dusty progenitor star of the Type II supernova 2017eaw. | KILPATRICK C.D. and FOLEY R.J. | ||
2019MNRAS.482..384X ![]() |
17 | D | 2 | 154 | 13 | Core-collapse supernovae ages and metallicities from emission-line diagnostics of nearby stellar populations. | XIAO L., GALBANY L., ELDRIDGE J.J., et al. | ||
2019MNRAS.482..438M | 43 | X | 1 | 10 | 8 | Explosions of blue supergiants from binary mergers for SN 1987A. | MENON A., UTROBIN V. and HEGER A. | ||
2019ApJ...870L..16S | 17 | D | 1 | 39 | ~ | Bright Type IIP supernovae in (low-metallicity) galaxies. | SCOTT S., NICHOLL M., BLANCHARD P., et al. | ||
2019MNRAS.483.3762K | 44 | X | 1 | 6 | 6 | The physics of flash (supernova) spectroscopy. | KOCHANEK C.S. | ||
2019MNRAS.483.5459R ![]() |
145 | D | X | 4 | 66 | 5 | Type II supernovae as distance indicators at near-IR wavelengths. | RODRIGUEZ O., PIGNATA G., HAMUY M., et al. | |
2019ApJ...873L...3B ![]() |
170 | C F | 2 | 13 | 5 | Strongly bipolar inner ejecta of the normal Type IIP supernova ASASSN-16at. | BOSE S., DONG S., ELIAS-ROSA N., et al. | ||
2019ApJ...873..127T | 170 | X | 4 | 28 | 7 | Supernova 2017eaw: molecule and dust formation from infrared observations. | TINYANONT S., KASLIWAL M.M., KRAFTON K., et al. | ||
2019MNRAS.485.1990R | 86 | C | 1 | 20 | 27 | Probing the final-stage progenitor evolution for Type IIP Supernova 2017eaw in NGC 6946. | RUI L., WANG X., MO J., et al. | ||
2019ApJ...875...59Y | 85 | C | 1 | 546 | 5 | Optical follow-up of gravitational-wave events During the second Advanced LIGO/VIRGO observing run with the DLT40 survey. | YANG S., SAND D.J., VALENTI S., et al. | ||
2019ApJ...876...19S | 486 | D | X C | 11 | 22 | 37 | The Type II-P supernova 2017eaw: from explosion to the nebular phase. | SZALAI T., VINKO J., KONYVES-TOTH R., et al. | |
2019MNRAS.485.5120B | 341 | X C | 7 | 20 | 2 | Signatures of circumstellar interaction in the Type IIL supernova ASASSN-15oz. | BOSTROEM K.A., VALENTI S., HORESH A., et al. | ||
2019MNRAS.486.2850D | 826 | D | X F | 19 | 27 | 3 | SN 2016B a.k.a. ASASSN-16ab: a transitional Type II supernova. | DASTIDAR R., MISRA K., SINGH M., et al. | |
2019ApJS..241...38S ![]() |
400 | D | X C | 9 | 220 | 38 | A comprehensive analysis of Spitzer supernovae. | SZALAI T., ZSIROS S., FOX O.D., et al. | |
2019ApJ...881..158S | 17 | D | 2 | 14 | ~ | The initial mass-final luminosity relation of Type II supernova progenitors: hints of new physics? | STRANIERO O., DOMINGUEZ I., PIERSANTI L., et al. | ||
2019MNRAS.488.3089K | 43 | X | 1 | 38 | ~ | On the observational behaviour of the highly polarized Type IIn supernova SN 2017hcc. | KUMAR B., ESWARAIAH C., SINGH A., et al. | ||
2019MNRAS.488.4239P ![]() |
102 | D | C | 4 | 106 | 19 | Comparison of the optical light curves of hydrogen-rich and hydrogen-poor type II supernovae. | PESSI P.J., FOLATELLI G., ANDERSON J.P., et al. | |
2019ApJ...882...68S | 145 | D | X | 4 | 27 | ~ | Observational signature of circumstellar interaction and 56Ni-mixing in the Type II Supernova 2016gfy. | SINGH A., KUMAR B., MORIYA T.J., et al. | |
2019MNRAS.489L..69N | 298 | X C | 6 | 9 | ~ | The aspherical explosion of the Type IIP SN 2017gmr+. | NAGAO T., CIKOTA A., PATAT F., et al. | ||
2019MNRAS.489..641M | 17 | D | 1 | 42 | ~ | A comparison of explosion energies for simulated and observed core-collapse supernovae. | MURPHY J.W., MABANTA Q. and DOLENCE J.C. | ||
2019ApJ...885...43A ![]() |
128 | X C | 2 | 36 | 30 | SN 2017gmr: an energetic Type II-P supernova with asymmetries. | ANDREWS J.E., SAND D.J., VALENTI S., et al. | ||
2019A&A...631A...8H | 1151 | A | D | S X C | 26 | 19 | 38 | Photometric and spectroscopic diversity of Type II supernovae. | HILLIER D.J. and DESSART L. |
2019MNRAS.489.5802V | 17 | D | 1 | 72 | 28 | Spectrophotometric templates for core-collapse supernovae and their application in simulations of time-domain surveys. | VINCENZI M., SULLIVAN M., FIRTH R.E., et al. | ||
2019ApJ...886...27W ![]() |
238 | A | X | 6 | 178 | ~ | Type IIP supernova progenitors and their explodability. I. Convective overshoot, blue loops, and surface composition. | WAGLE G.A., RAY A., DEV A., et al. | |
2019ApJ...887....4D | 485 | D | X C | 11 | 73 | ~ | Carnegie Supernova Project-II: near-infrared spectroscopic diversity of Type II supernovae. | DAVIS S., HSIAO E.Y., ASHALL C., et al. | |
2019MNRAS.489.3591P ![]() |
145 | D | X | 4 | 164 | 31 | Anomaly detection in the Open Supernova Catalog. | PRUZHINSKAYA M.V., MALANCHEV K.L., KORNILOV M.V., et al. | |
2019MNRAS.490.1605D | 230 | D | X F | 5 | 25 | ~ | SN 2015an: a normal luminosity type II supernova with low expansion velocity at early phases. | DASTIDAR R., MISRA K., VALENTI S., et al. | |
2019MNRAS.490.2042U | 187 | D | X F | 4 | 15 | ~ | Resolving the puzzle of type IIP SN 2016X. | UTROBIN V.P. and CHUGAI N.N. | |
2019MNRAS.490.2799D | 485 | D | X C F | 10 | 109 | 41 | The Berkeley sample of Type II supernovae: BVRI light curves and spectroscopy of 55 SNe II. | DE JAEGER T., ZHENG W., STAHL B.E., et al. | |
2020ApJ...889...86W | 810 | A | X | 19 | 3 | ~ | Type IIP supernova progenitors. II. Stellar mass and obscuration by the dust in the circumstellar medium. | WAGLE G.A. and RAY A. | |
2020ApJ...890..177K | 104 | D | X | 3 | 19 | ~ | A new method to classify Type IIP/IIL supernovae based on their spectra. | KOU S., CHEN X. and LIU X. | |
2020MNRAS.493.1761R ![]() |
44 | X | 1 | 34 | 9 | SN 2016gsd: an unusually luminous and linear Type II supernova with high velocities. | REYNOLDS T.M., FRASER M., MATTILA S., et al. | ||
2020MNRAS.494L..53F | 17 | D | 1 | 19 | ~ | The uncertain masses of progenitors of core-collapse supernovae and direct-collapse black holes. | FARRELL E.J., GROH J.H., MEYNET G., et al. | ||
2020ApJ...894..118W | 157 | A | X | 4 | 8 | ~ | Type IIP supernova progenitors. III. Blue to red supergiant ratio in low-metallicity models with convective overshoot. | WAGLE G.A., RAY A. and RAGHU A. | |
2020ApJ...895L...3A | 44 | X | 1 | 142 | ~ | Carnegie supernova Project-II: a new method to photometrically identify sub-types of extreme Type Ia supernovae. | ASHALL C., LU J., BURNS C., et al. | ||
2020ApJ...895...31B ![]() |
132 | X C | 2 | 14 | 16 | Discovery and rapid follow-up observations of the unusual Type II SN 2018ivc in NGC 1068. | BOSTROEM K.A., VALENTI S., SAND D.J., et al. | ||
2020MNRAS.494.5576P | 87 | F | 1 | 24 | ~ | The mystery of photometric twins DES17X1boj and DES16E2bjy. | PURSIAINEN M., GUTIERREZ C.P., WISEMAN P., et al. | ||
2020MNRAS.494.5882R | 131 | X F | 2 | 61 | ~ | Luminous Type II supernovae for their low expansion velocities. | RODRIGUEZ O., PIGNATA G., ANDERSON J.P., et al. | ||
2020A&A...638A..47M | 636 | T A | S X | 13 | 17 | ~ |
Connection of supernovae 2002ap, 2003gd, 2013ej, and 2019krl in M 74 with atomic gas accretion and spiral structure. |
MICHALOWSKI M.J., GOTKIEWICZ N., HJORTH J., et al. | |
2020MNRAS.496.3402D | 150 | D | X | 4 | 23 | 56 | A measurement of the Hubble constant from Type II supernovae. | DE JAEGER T., STAHL B.E., ZHENG W., et al. | |
2020MNRAS.496.4517S | 61 | D | X | 2 | 46 | 22 | The γ-ray deposition histories of core-collapse supernovae. | SHARON A. and KUSHNIR D. | |
2020MNRAS.497.2227P | 17 | D | 8 | 16 | ~ | Constraining early-time dust formation in core-collapse supernovae. | PRIESTLEY F.D., BEVAN A., BARLOW M.J., et al. | ||
2020ApJ...900...11W ![]() |
1114 | A | S X C | 24 | 22 | 12 | Late-time circumstellar interaction of SN 2017eaw in NGC 6946. | WEIL K.E., FESEN R.A., PATNAUDE D.J., et al. | |
2020MNRAS.498...84Z | 802 | D | X C | 18 | 19 | 23 | SN 2018zd: an unusual stellar explosion as part of the diverse Type II Supernova landscape. | ZHANG J., WANG X., JOZSEF V., et al. | |
2020A&A...641A.177M ![]() |
17 | D | 1 | 288 | ~ | Stripped-envelope core-collapse supernova 56Ni masses. Persistently larger values than supernovae type II. | MEZA N. and ANDERSON J.P. | ||
2020MNRAS.499..974G | 479 | X F | 10 | 41 | ~ | SN 2017ivv: two years of evolution of a transitional Type II supernova. | GUTIERREZ C.P., PASTORELLO A., JERKSTRAND A., et al. | ||
2020A&A...642A..33D | 104 | D | X | 3 | 7 | ~ | Radiative-transfer modeling of nebular-phase type II supernovae. Dependencies on progenitor and explosion properties. | DESSART L. and HILLIER D.J. | |
2020A&A...642A.214K | 44 | X | 1 | 21 | 15 | Supernova explosions interacting with aspherical circumstellar material: implications for light curves, spectral line profiles, and polarization. | KURFURST P., PEJCHA O. and KRTICKA J. | ||
2020MNRAS.499.3544S | 44 | X | 1 | 35 | 12 | High-resolution spectroscopy of SN 2017hcc and its blueshifted line profiles from post-shock dust formation. | SMITH N. and ANDREWS J.E. | ||
2020ApJ...905L..19B | 44 | X | 1 | 11 | ~ | Expansion and age of the supernova remnant G350.1-0.3: high-velocity iron ejecta from a core-collapse event. | BORKOWSKI K.J., MILTICH W. and REYNOLDS S.P. | ||
2021A&A...645L...7O | 45 | X | 1 | 9 | ~ | Revisiting the progenitor of the low-luminosity type II-plateau supernova, SN 2008bk. | O'NEILL D., KOTAK R., FRASER M., et al. | ||
2021A&A...645A...6Z | 90 | F | 4 | 34 | 29 | Effect of binary evolution on the inferred initial and final core masses of hydrogen-rich, Type II supernova progenitors. | ZAPARTAS E., DE MINK S.E., JUSTHAM S., et al. | ||
2021ApJ...908...75B | 18 | D | 1 | 556 | 32 | The radio luminosity-risetime function of core-collapse supernovae. | BIETENHOLZ M.F., BARTEL N., ARGO M., et al. | ||
2021A&A...646A..22Y ![]() |
179 | X C | 3 | 5 | ~ | Is supernova SN 2020faa an iPTF14hls look-alike? | YANG S., SOLLERMAN J., CHEN T.-W., et al. | ||
2021ApJ...909..145D | 90 | C | 1 | 25 | ~ | SN 2013ai: a link between hydrogen-rich and hydrogen-poor core-collapse supernovae. | DAVIS S., PESSI P.J., FRASER M., et al. | ||
2021MNRAS.503.3472B | 269 | X C | 5 | 36 | 7 | ASASSN-18am/SN 2018gk: an overluminous Type IIb supernova from a massive progenitor. | BOSE S., DONG S., KOCHANEK C.S., et al. | ||
2021A&A...649A.134K | 224 | X C | 4 | 69 | 4 | Core-collapse supernova subtypes in luminous infrared galaxies. | KANKARE E., EFSTATHIOU A., KOTAK R., et al. | ||
2021ApJ...914...41J | 90 | C | 1 | 18 | 8 | A grid of core-collapse supernova remnant models. I. The effect of wind-driven mass loss. | JACOVICH T., PATNAUDE D., SLANE P., et al. | ||
2021MNRAS.505..116U | 287 | D | X F | 6 | 16 | ~ | Enormous explosion energy of Type IIP SN 2017gmr with bipolar 56Ni ejecta. | UTROBIN V.P., CHUGAI N.N., ANDREWS J.E., et al. | |
2021MNRAS.505.3664N | 3718 | T K A | D | S X C F | 80 | 14 | 10 |
Evidence for multiple origins of fast declining Type II supernovae from spectropolarimetry of SN 2013ej and SN 2017ahn. |
NAGAO T., PATAT F., TAUBENBERGER S., et al. |
2021MNRAS.505.4890L | 1030 | X C F | 21 | 12 | 3 | SN 2015bf: A fast declining type II supernova with flash-ionized signatures. | LIN H., WANG X., ZHANG J., et al. | ||
2021ApJ...916...21R ![]() |
45 | X | 1 | 17 | 11 | Toward precision cosmology with improved PNLF distances using VLT-MUSEI. Methodology and tests. | ROTH M.M., JACOBY G.H., CIARDULLO R., et al. | ||
2021A&A...651A..10D | 45 | X | 1 | 10 | ~ | Polarization signatures of a high-velocity scatterer in nebular-phase spectra of Type II supernovae. | DESSART L., HILLIER D.J. and LEONARD D.C. | ||
2021A&A...651A..19D | 90 | X | 2 | 16 | ~ | Multiepoch VLT-FORS spectropolarimetric observations of supernova 2012aw reveal an asymmetric explosion. | DESSART L., LEONARD D.C., HILLIER D.J., et al. | ||
2021ApJ...917...63A | 45 | X | 1 | 23 | 13 | The blue supergiant progenitor of the supernova imposter AT 2019krl. | ANDREWS J.E., JENCSON J.E., VAN DYK S.D., et al. | ||
2021A&A...652A..64D | 467 | D | S X C | 9 | 14 | 16 | The explosion of 9-29 M☉ stars as Type II supernovae: Results from radiative-transfer modeling at one year after explosion. | DESSART L., HILLIER D.J., SUKHBOLD T., et al. | |
2021MNRAS.506.4819P | 645 | D | X C | 14 | 21 | 3 | SN 2019hcc: a Type II supernova displaying early O II lines. | PARRAG E., INSERRA C., SCHULZE S., et al. | |
2021MNRAS.508..516N | 108 | D | X | 3 | 53 | 35 | The search for failed supernovae with the Large Binocular Telescope: a new candidate and the failed SN fraction with 11 yr of data. | NEUSTADT J.M.M., KOCHANEK C.S., STANEK K.Z., et al. | |
2021ApJ...919...17S | 242 | D | X | 6 | 72 | 14 | Spitzer's last look at extragalactic explosions: long-term evolution of interacting supernovae. | SZALAI T., FOX O.D., ARENDT R.G., et al. | |
2021ApJ...921L..35L | 2760 | A | X C | 61 | 5 | 4 | A high-velocity scatterer revealed in the thinning ejecta of a Type II supernova. | LEONARD D.C., DESSART L., HILLIER D.J., et al. | |
2021A&A...655A.105S ![]() |
269 | X C | 5 | 22 | 12 | The Type II supernova SN 2020jfo in M 61, implications for progenitor system, and explosion dynamics. | SOLLERMAN J., YANG S., SCHULZE S., et al. | ||
2022AJ....163...14B ![]() |
19 | D | 1 | 285 | ~ | Galaxian contamination in Galactic reddening maps. | BROWN P.J. and WALKER T. | ||
2022MNRAS.509.2013Z | 793 | X C F | 15 | 26 | 7 | SN 2018hfm: a low-energy Type II supernova with prominent signatures of circumstellar interaction and dust formation. | ZHANG X., WANG X., SAI H., et al. | ||
2022ApJ...924...15J | 234 | X C | 4 | 30 | 53 | Final moments. I. Precursor emission, envelope inflation, and enhanced mass loss preceding the luminous Type II Supernova 2020tlf. | JACOBSON-GALAN W.V., DESSART L., JONES D.O., et al. | ||
2022ApJ...926...20T | 94 | X | 2 | 16 | 25 | The Early Phases of Supernova 2020pni: Shock Ionization of the Nitrogen-enriched Circumstellar Material. | TERRERAN G., JACOBSON-GALAN W.V., GROH J.H., et al. | ||
2022MNRAS.512.1541G | 19 | D | 2 | 162 | ~ | Metallicity estimation of core-collapse Supernova H II regions in galaxies within 30 Mpc. | GANSS R., PLEDGER J.L., SANSOM A.E., et al. | ||
2022MNRAS.512.2777T | 187 | X F | 3 | 31 | 15 | Progenitor and close-in circumstellar medium of type II supernova 2020fqv from high-cadence photometry and ultra-rapid UV spectroscopy. | TINYANONT S., RIDDEN-HARPER R., FOLEY R.J., et al. | ||
2022MNRAS.513.4556Z | 65 | D | X | 2 | 41 | 1 | SN 2019va: a Type IIP Supernova with Large Influence of Nickel-56 Decay on the Plateau-phase Light Curve. | ZHANG X., WANG X., SAI H., et al. | |
2022ApJ...930...31B | 19 | D | 1 | 90 | 3 | Characterization of Supernovae Based on the Spectral-Temporal Energy Distribution: Two Possible SN Ib Subtypes. | BENGYAT O. and GAL-YAM A. | ||
2022MNRAS.514.4620D | 20 | D | 1 | 26 | 26 | A 5 per cent measurement of the Hubble-Lemaitre constant from Type II supernovae. | DE JAEGER T., GALBANY L., RIESS A.G., et al. | ||
2022RAA....22c5019S | 48 | X | 1 | 9 | 10 | Imprints of the Jittering Jets Explosion Mechanism in the Morphology of the Supernova Remnant SNR 0540-69.3. | SOKER N. | ||
2022MNRAS.514.5686P | 19 | D | 2 | 87 | 9 | Oxygen and calcium nebular emission line relationships in core-collapse supernovae and Ca-rich transients. | PRENTICE S.J., MAGUIRE K., SIEBENALER L., et al. | ||
2022ApJ...933...89S | 47 | X | 1 | 8 | 3 | Dust Production in a Thin Dense Shell in Supernovae with Early Circumstellar Interactions. | SARANGI A. and SLAVIN J.D. | ||
2022ApJ...933..194P | 261 | A | X | 6 | 9 | ~ | Type IIP Supernova IV. Shock Breakout from Progenitor Stars Modeled with Convective Overshoot and Mass Loss. | PALANI BALAJI H., RAY A., WAGLE G.A., et al. | |
2022MNRAS.515..897R | 485 | D | X F | 10 | 122 | 8 | Luminosity distribution of Type II supernova progenitors. | RODRIGUEZ O. | |
2022ApJ...934..134V | 467 | X C | 9 | 17 | 10 | Early-time Ultraviolet Spectroscopy and Optical Follow-up Observations of the Type IIP Supernova 2021yja. | VASYLYEV S.S., FILIPPENKO A.V., VOGL C., et al. | ||
2022MNRAS.516.2171U | 47 | X | 1 | 7 | 2 | Understanding the secular evolution of NGC 628 using UltraViolet Imaging Telescope. | UJJWAL K., KARTHA S.S., SUBRAMANIAN S., et al. | ||
2022MNRAS.517.1483D | 140 | X F | 2 | 17 | 12 | Explosion imminent: the appearance of red supergiants at the point of core-collapse. | DAVIES B., PLEZ B. and PETRAULT M. | ||
2022A&A...666A..82R | 280 | X C | 5 | 18 | ~ | Type IIP supernova SN2016X in radio frequencies. | RUIZ-CARMONA R., SFARADI I. and HORESH A. | ||
2022ApJ...939..105B | 93 | S | 1 | 121 | 10 | Seven Years of Coordinated Chandra-NuSTAR Observations of SN 2014C Unfold the Extreme Mass-loss History of Its Stellar Progenitor. | BRETHAUER D., MARGUTTI R., MILISAVLJEVIC D., et al. | ||
2022ApJ...941L...4N | 47 | X | 1 | 15 | 1 | Diversity of Dust Properties in External Galaxies Confirmed by Polarization Signals from Type II Supernovae. | NAGAO T., PATAT F., MAEDA K., et al. | ||
2023ApJ...944..110M | 120 | D | X | 3 | 110 | 4 | Comparing the Locations of Supernovae to CO (2-1) Emission in Their Host Galaxies. | MAYKER CHEN N., LEROY A.K., LOPEZ L.A., et al. | |
2023ApJ...945..107P | 100 | C | 1 | 39 | 5 | Circumstellar Medium Interaction in SN 2018lab, A Low-luminosity Type IIP Supernova Observed with TESS. | PEARSON J., HOSSEINZADEH G., SAND D.J., et al. | ||
2023ApJ...947...42B | 20 | D | 2 | 34 | 1 | X-Ray-luminous Supernovae: Threats to Terrestrial Biospheres. | BRUNTON I.R., O'MAHONEY C., FIELDS B.D., et al. | ||
2023ApJ...949L..12A | 20 | D | 1 | 56 | 3 | Constraining High-energy Neutrino Emission from Supernovae with IceCube. | ABBASI R., ACKERMANN M., ADAMS J., et al. | ||
2023ApJ...949...75V | 50 | X | 1 | 9 | 2 | The Type II-P Supernova 2019mhm and Constraints on its Progenitor System. | VAZQUEZ J., KILPATRICK C.D., DIMITRIADIS G., et al. | ||
2023MNRAS.518.5741S | 120 | D | X | 3 | 22 | 5 | What can Gaussian processes really tell us about supernova light curves? Consequences for Type II(b) morphologies and genealogies. | STEVANCE H.F. and LEE A. | |
2023MNRAS.519..248A | 250 | X F | 4 | 46 | 3 | Photometric and spectroscopic analysis of the Type II SN 2020jfo with a short plateau. | AILAWADHI B., DASTIDAR R., MISRA K., et al. | ||
2023MNRAS.519..471V | 980 | K A | S X C F | 17 | 41 | 8 | The disappearances of six supernova progenitors. | VAN DYK S.D., DE GRAW A., BAER-WAY R., et al. | |
2023ApJ...953L..18B | 50 | X | 1 | 17 | ~ | SN 2022acko: The First Early Far-ultraviolet Spectra of a Type IIP Supernova. | BOSTROEM K.A., DESSART L., HILLIER D.J., et al. | ||
2023A&A...675A..33D | 370 | D | X | 8 | 20 | ~ | The morphing of decay powered to interaction powered Type II supernova ejecta at nebular times. | DESSART L., GUTIERREZ C.P., KUNCARAYAKTI H., et al. |
© Université de Strasbourg/CNRS
• Contact