SN 2013ej , the SIMBAD biblio

SN 2013ej , the SIMBAD biblio (185 results) C.D.S. - SIMBAD4 rel 1.8 - 2023.10.01CEST06:48:23

Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2014MNRAS.437.1337G 79           X         2 27 7 Parameters of the brightest star formation regions in the two principal spiral arms of NGC 628. GUSEV A.S., EGOROV O.V. and SAKHIBOV F.
2014MNRAS.438L.101V viz 1871 T K A D     X C F     45 13 127 The first month of evolution of the slow-rising Type IIP
SN 2013ej in M74.
2014MNRAS.439L..56F 1275 T K A D     X C F     30 6 48 On the progenitor of the Type IIP
SN 2013ej in M74.
2014ApJ...792...52S 898   K A     X C       22 13 ~ The tip of the red giant branch distance to the perfect spiral galaxy M74 hosting three core-collapse supernovae. SUNG JANG I. and LEE M.G.
2014MNRAS.442..844F viz 81           X         2 32 135 Photometric and spectroscopic properties of Type II-P supernovae. FARAN T., POZNANSKI D., FILIPPENKO A.V., et al.
2014ApJ...795..142G viz 16       D               1 448 7 Defining photometric peculiar type Ia supernovae. GONZALEZ-GAITAN S., HSIAO E.Y., PIGNATA G., et al.
2014AJ....148..107R 413       D     X C       10 104 44 Photospheric magnitude diagrams for Type II supernovae: a promising tool to compute distances. RODRIGUEZ O., CLOCCHIATTI A. and HAMUY M.
2014A&A...572A..38G 16       D   O           1 176 95 Nearby supernova host galaxies from the CALIFA Survey. I. Sample, data analysis, and correlation to star-forming regions. GALBANY L., STANISHEV V., MOURAO A.M., et al.
2015MNRAS.448.2608V viz 18       D               2 21 53 Supernova 2013by: a Type IIL supernova with a IIP-like light-curve drop. VALENTI S., SAND D., STRITZINGER M., et al.
2015ApJ...806..160B 4417 T K A D S   X C       108 23 61
SN 2013ej: a Type IIL supernova with weak signs of interaction.
2015A&A...579A..40S viz 85               F     1 49 256 PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects. SMARTT S.J., VALENTI S., FRASER M., et al.
2013ATel.5228....1V 118 T         X         2 3 3 Spectroscopic classification for
PSN J01364816+1545310 in M74 with FLOYDS at Faulkes Telescope South.
2013ATel.5229....1V 118 T         X         2 4 2 The probable progenitor of
PSN J01364816+1545310 in M 74.
2013ATel.5230....1K 118 T         X         2 2 2 Possible Spitzer counterpart of
PSN J01364816+1545310.
2013ATel.5237....1S 276 T         X         6 2 7 Pre-explosion ASAS-SN V-Band Upper-Limits on
SN 2013ej (
PSN J01364816+1545310).
2013ATel.5243....1M 275 T         X         6 4 5 Swift XRT and UVOT detection of SN 2013ej. MARGUTTI R., CHAKRABORTI S., BROWN P.J., et al.
2013ATel.5264....1S 157 T         X         3 4 5 Medicina-Noto VLBI observation of SN 2013ej. SOKOLOVSKY K., GIROLETTI M., STAGNI M., et al.
2013ATel.5275....1L 276 T         X         6 3 11
SN 2013ej is a highly polarized Type II-Plateau Supernova.
2015MNRAS.450.3289G 42           X         1 42 125 The search for failed supernovae with the Large Binocular Telescope: first candidates. GERKE J.R., KOCHANEK C.S. and STANEK K.Z.
2013ATel.5466....1L 199 T         X         4 2 8 Early Photometry of the Type IIP supernova
SN 2013ej.
LEE M., LI K.L., WANG J.-W., et al.
2015ApJ...807...59H 4160 T K A S   X C       101 14 36
SN 2013ej in M74: a luminous and fast-declining type II-P supernova.
HUANG F., WANG X., ZHANG J., et al.
2015A&A...582A...3G 56       D     X         2 68 45 A comparative study of Type II-P and II-L supernova rise times as exemplified by the case of LSQ 13cuw. GALL E.E.E., POLSHAW J., KOTAK R., et al.
2016A&A...585A..19B viz 42           X         1 5 7 Evidence for rapid variability in the optical light curve of the Type Ia SN 2014J. BONANOS A.Z. and BOUMIS P.
2016ApJ...817...22C 1043 T K A S   X C       23 7 25 Probing final stages of stellar evolution with X-ray observations of
SN 2013ej.
2016AJ....151...33G viz 16       D               1 168 81 UBVRIz light curves of 51 Type II supernovae. GALBANY L., HAMUY M., PHILLIPS M.M., et al.
2016MNRAS.455.2712B 707       D     X C F     16 40 3 Photometric and polarimetric observations of fast declining Type II supernovae 2013hj and 2014G. BOSE S., KUMAR B., MISRA K., et al.
2016MNRAS.456.2848H viz 16       D               1 919 37 Supernovae and their host galaxies - III. The impact of bars and bulges on the radial distribution of supernovae in disc galaxies. HAKOBYAN A.A., KARAPETYAN A.G., BARKHUDARYAN L.V., et al.
2016MNRAS.456.3157K 2071 T K A D     X C       50 39 8 Broad-band polarimetric investigation of the Type II-plateau supernova 2013ej. KUMAR B., PANDEY S.B., ESWARAIAH C., et al.
2016ApJ...819...35A viz 207           X C       4 28 115 Rapidly rising transients in the supernova-superluminous supernova gap. ARCAVI I., WOLF W.M., HOWELL D.A., et al.
2016ApJ...820...33R viz 41           X         1 70 56 Type II supernova energetics and comparison of light curves to shock-cooling models. RUBIN A., GAL-YAM A., DE CIA A., et al.
2016ApJ...822....6D 4753 T K A D     X C       116 23 37 Extensive spectroscopy and photometry of the Type IIP supernova 2013ej. DHUNGANA G., KEHOE R., VINKO J., et al.
2016ApJ...823..127N 17       D               1 25 27 The importance of 56Ni in shaping the light curves of type II supernovae. NAKAR E., POZNANSKI D. and KATZ B.
2016A&A...589A..53N 422       D     X C       10 18 16 A two-component model for fitting light curves of core-collapse supernovae. NAGY A.P. and VINKO J.
2016A&A...591A..48G 16       D               1 271 66 Nearby supernova host galaxies from the CALIFA survey. II. Supernova environmental metallicity. GALBANY L., STANISHEV V., MOURAO A.M., et al.
2016ApJ...826L...3T 44           X         1 4 13 Terrestrial effects of nearby supernovae in the early pleistocene. THOMAS B.C., ENGLER E.E., KACHELRIESS M., et al.
2016ApJ...826L..29C 45           X         1 8 32 A DECam search for an optical counterpart to the LIGO gravitational-wave event GW151226. COWPERTHWAITE P.S., BERGER E., SOARES-SANTOS M., et al.
2016MNRAS.459.3939V viz 748   K   D     X C F     17 210 225 The diversity of Type II supernova versus the similarity in their progenitors. VALENTI S., HOWELL D.A., STRITZINGER M.D., et al.
2016MNRAS.461.2003Y viz 4468 T K A D     X C F     108 18 32 450 d of Type II
SN 2013ej in optical and near-infrared.
2016MNRAS.461.3296N viz 41           X         1 355 95 Multimessenger signals of long-term core-collapse supernova simulations: synergetic observation strategies. NAKAMURA K., HORIUCHI S., TANAKA M., et al.
2016MNRAS.462..137T 286           X C       6 14 29 The multifaceted Type II-L supernova 2014G from pre-maximum to nebular phase. TERRERAN G., JERKSTRAND A., BENETTI S., et al.
2016ApJ...832..139H 245           X C       5 14 16 Optical and ultraviolet observations of the very young Type IIP SN 2014cx in NGC 337. HUANG F., WANG X., ZAMPIERI L., et al.
2016ApJ...833..231T 179       D     X C       4 103 50 A systematic study of mid-infrared emission from core-collapse supernovae with SPIRITS. TINYANONT S., KASLIWAL M.M., FOX O.D., et al.
2017ApJ...834..118M 3401 T K A S   X C       80 22 35 Asphericity, interaction, and dust in the type II-P/II-L supernova 2013EJ in Messier 74. MAUERHAN J.C., VAN DYK S.D., JOHANSSON J., et al.
2017ApJ...834..174K 41           X         1 100 17 A revised planetary nebula luminosity function distance to NGC 628 using MUSE. KRECKEL K., GROVES B., BIGIEL F., et al.
2017ApJ...835...64G 19       D               1 91 351 An open catalog for supernova data. GUILLOCHON J., PARRENT J., KELLEY L.Z., et al.
2017ApJ...836L..12T 88             C       1 9 58 The progenitor and early evolution of the Type IIb SN 2016gkg. TARTAGLIA L., FRASER M., SAND D.J., et al.
2017ApJ...838...28M 1357   K   D S   X C       31 6 140 Unifying Type II supernova light curves with dense circumstellar material. MOROZOVA V., PIRO A.L. and VALENTI S.
2017ApJ...839L...6S 43           X         1 3 7 The magnetar model of the superluminous supernova Gaia16apd and the explosion jet feedback mechanism. SOKER N.
2017MNRAS.464.3013P 222       D     X C F     4 30 11 Radiation-hydrodynamical modelling of underluminous Type II plateau supernovae. PUMO M.L., ZAMPIERI L., SPIRO S., et al.
2017ApJ...840..105M 42           X         1 4 4 A supernova at 50 pc: effects on the Earth's atmosphere and biota. MELOTT A.L., THOMAS B.C., KACHELRIESS M., et al.
2017ApJ...841...64Z 41           X         1 40 13 Discovery and follow-up observations of the young Type Ia supernova 2016coj. ZHENG W., FILIPPENKO A.V., MAUERHAN J., et al.
2017ApJ...841..127M 266       D     X C       6 26 80 The nickel mass distribution of normal Type II supernovae. MULLER T., PRIETO J.L., PEJCHA O., et al.
2017MNRAS.467.3347K 536     A D     X C F     12 13 22 Supernova progenitors, their variability and the Type IIP Supernova ASASSN-16fq in M66. KOCHANEK C.S., FRASER M., ADAMS S.M., et al.
2017AJ....154...51M 20       D               2 17 73 Accurate distances to important spiral galaxies: M63, M74, NGC 1291, NGC 4559, NGC 4625, and NGC 5398. McQUINN K.B.W., SKILLMAN E.D., DOLPHIN A.E., et al.
2017ApJ...846...37U 41           X         1 11 6 Light-curve analysis of ordinary Type IIP supernovae based on neutrino-driven explosion simulations in three dimensions. UTROBIN V.P., WONGWATHANARAT A., JANKA H.-Th., et al.
2017MNRAS.469.1445A 141       D     X         4 52 91 The search for failed supernovae with the Large Binocular Telescope: constraints from 7 yr of data. ADAMS S.M., KOCHANEK C.S., GERKE J.R., et al.
2017MNRAS.469.2202M 387       D S   X C       8 30 28 The resolved stellar populations around 12 Type IIP supernovae. MAUND J.R.
2017ApJ...848....5B 387       D     X C       9 20 ~ The transition of a Type IIL supernova into a supernova remnant: late-time observations of SN 2013by. BLACK C.S., MILISAVLJEVIC D., MARGUTTI R., et al.
2017ApJ...848L..26S 166             C F     2 19 22 The unprecedented properties of the first electromagnetic counterpart to a gravitational-wave source. SIEBERT M.R., FOLEY R.J., DROUT M.R., et al.
2017ApJ...849..109P 82               F     1 26 12 The impact of progenitor mass loss on the dynamical and spectral evolution of supernova remnants. PATNAUDE D.J., LEE S.-H., SLANE P.O., et al.
2017ApJ...851...95S 42           X         1 24 24 Magnetar-powered superluminous supernovae must first be exploded by jets. SOKER N. and GILKIS A.
2017ApJ...851..138D 601   K A     X C       14 4 2 Modeling Type II-P/II-L supernovae interacting with recent episodic mass ejections from their presupernova stars with MESA and SNEC. DAS S. and RAY A.
2017MNRAS.471.4047A 41           X         1 25 6 Optical and IR observations of SN 2013L, a Type IIn Supernova surrounded by asymmetric CSM. ANDREWS J.E., SMITH N., McCULLY C., et al.
2017MNRAS.472.5004U 1910 T K   D     X C F     44 15 5 Luminous Type IIP
SN 2013ej with high-velocity 56Ni ejecta.
2018MNRAS.473..513F 184       D       C F     9 29 10 The evolution of temperature and bolometric luminosity in Type II supernovae. FARAN T., NAKAR E. and POZNANSKI D.
2018ApJ...853...62T viz 86           X         2 30 88 The early detection and follow-up of the highly obscured Type II supernova 2016ija/DLT16am. TARTAGLIA L., SAND D.J., VALENTI S., et al.
2018ApJ...855..107G viz 17       D               2 285 86 PISCO: the PMAS/PPak Integral-field Supernova hosts COmpilation. GALBANY L., ANDERSON J.P., SANCHEZ S.F., et al.
2018MNRAS.474.2116D 143       D     X         4 58 97 The initial masses of the red supergiant progenitors to Type II supernovae. DAVIES B. and BEASOR E.R.
2018MNRAS.475.1104B 42           X         1 28 8 SN2012ab: a peculiar Type IIn supernova with aspherical circumstellar material. BILINSKI C., SMITH N., WILLIAMS G.G., et al.
2018MNRAS.475.3959H 920     A D     X C F     21 26 18 SN 2016X: a type II-P supernova with a signature of shock breakout from explosion of a massive red supergiant. HUANG F., WANG X.-F., HOSSEINZADEH G., et al.
2018MNRAS.476.1497B 502           X C F     10 31 9 SN 2013fs and SN 2013fr: exploring the circumstellar-material diversity in Type II supernovae. BULLIVANT C., SMITH N., WILLIAMS G.G., et al.
2018ApJ...858...15M 146       D     X         4 23 111 Measuring the progenitor masses and dense circumstellar material of Type II supernovae. MOROZOVA V., PIRO A.L. and VALENTI S.
2018MNRAS.476.4592D 42           X         1 75 11 Observed Type II supernova colours from the Carnegie Supernova Project-I. DE JAEGER T., ANDERSON J.P., GALBANY L., et al.
2018MNRAS.477...74A 170           X C       3 18 69 Strong late-time circumstellar interaction in the peculiar supernova iPTF14hls. ANDREWS J.E. and SMITH N.
2018ApJ...862..107B 167           X C       3 26 7 ASASSN-15nx: a luminous Type II supernova with a "perfect" linear decline. BOSE S., DONG S., KOCHANEK C.S., et al.
2018NatAs...2..574A 1 12 16 The lowest-metallicity type II supernova from the highest-mass red supergiant progenitor. ANDERSON J.P., DESSART L., GUTIERREZ C.P., et al.
2018MNRAS.478.3776D 309       D     X C       7 13 8 SN 2016esw: a luminous Type II supernova observed within the first day after the explosion. DE JAEGER T., GALBANY L., GUTIERREZ C.P., et al.
2018ApJ...863...20J 167           X C       3 60 5 SPIRITS 16tn in NGC 3556: a heavily obscured and low-luminosity supernova at 8.8 Mpc. JENCSON J.E., KASLIWAL M.M., ADAMS S.M., et al.
2018ApJ...863..163N viz 59       D     X         2 24 ~ Long-term behavior of a Type IIP supernova SN 2004dj in the radio bands. NAYANA A.J., CHANDRA P. and RAY A.K.
2018MNRAS.473.3863L 100       D         F     3 83 13 Progenitors of low-luminosity Type II-Plateau supernovae. LISAKOV S.M., DESSART L., HILLIER D.J., et al.
2018ApJ...867....4M 2491 T   A S   X C       57 6 5 Theoretical X-ray light curves of young SNe. II. The example of
SN 2013ej.
2018MNRAS.480.1696J 518   K   D S   X C       11 18 13 The quiescent progenitors of four Type II-P/L supernovae. JOHNSON S.A., KOCHANEK C.S. and ADAMS S.M.
2018MNRAS.480.2475S 476       D     X         12 58 8 ASASSN-14dq: a fast-declining Type II-P supernova in a low-luminosity host galaxy. SINGH A., SRIVASTAV S., KUMAR B., et al.
2018MNRAS.481..566K viz 17       D               1 365 4 The impact of spiral density waves on the distribution of supernovae. KARAPETYAN A.G., HAKOBYAN A.A., BARKHUDARYAN L.V., et al.
2018MNRAS.481.2536K 42           X         1 20 14 The dusty progenitor star of the Type II supernova 2017eaw. KILPATRICK C.D. and FOLEY R.J.
2019MNRAS.482..384X viz 17       D               2 154 13 Core-collapse supernovae ages and metallicities from emission-line diagnostics of nearby stellar populations. XIAO L., GALBANY L., ELDRIDGE J.J., et al.
2019MNRAS.482..438M 43           X         1 10 8 Explosions of blue supergiants from binary mergers for SN 1987A. MENON A., UTROBIN V. and HEGER A.
2019ApJ...870L..16S 17       D               1 39 ~ Bright Type IIP supernovae in (low-metallicity) galaxies. SCOTT S., NICHOLL M., BLANCHARD P., et al.
2019MNRAS.483.3762K 44           X         1 6 6 The physics of flash (supernova) spectroscopy. KOCHANEK C.S.
2019MNRAS.483.5459R viz 145       D     X         4 66 5 Type II supernovae as distance indicators at near-IR wavelengths. RODRIGUEZ O., PIGNATA G., HAMUY M., et al.
2019ApJ...873L...3B viz 170             C F     2 13 5 Strongly bipolar inner ejecta of the normal Type IIP supernova ASASSN-16at. BOSE S., DONG S., ELIAS-ROSA N., et al.
2019ApJ...873..127T 170           X         4 28 7 Supernova 2017eaw: molecule and dust formation from infrared observations. TINYANONT S., KASLIWAL M.M., KRAFTON K., et al.
2019MNRAS.485.1990R 86             C       1 20 27 Probing the final-stage progenitor evolution for Type IIP Supernova 2017eaw in NGC 6946. RUI L., WANG X., MO J., et al.
2019ApJ...875...59Y 85             C       1 546 5 Optical follow-up of gravitational-wave events During the second Advanced LIGO/VIRGO observing run with the DLT40 survey. YANG S., SAND D.J., VALENTI S., et al.
2019ApJ...876...19S 486       D     X C       11 22 37 The Type II-P supernova 2017eaw: from explosion to the nebular phase. SZALAI T., VINKO J., KONYVES-TOTH R., et al.
2019MNRAS.485.5120B 341           X C       7 20 2 Signatures of circumstellar interaction in the Type IIL supernova ASASSN-15oz. BOSTROEM K.A., VALENTI S., HORESH A., et al.
2019MNRAS.486.2850D 826       D     X   F     19 27 3 SN 2016B a.k.a. ASASSN-16ab: a transitional Type II supernova. DASTIDAR R., MISRA K., SINGH M., et al.
2019ApJS..241...38S viz 400       D     X C       9 220 38 A comprehensive analysis of Spitzer supernovae. SZALAI T., ZSIROS S., FOX O.D., et al.
2019ApJ...881..158S 17       D               2 14 ~ The initial mass-final luminosity relation of Type II supernova progenitors: hints of new physics? STRANIERO O., DOMINGUEZ I., PIERSANTI L., et al.
2019MNRAS.488.3089K 43           X         1 38 ~ On the observational behaviour of the highly polarized Type IIn supernova SN 2017hcc. KUMAR B., ESWARAIAH C., SINGH A., et al.
2019MNRAS.488.4239P viz 102       D       C       4 106 19 Comparison of the optical light curves of hydrogen-rich and hydrogen-poor type II supernovae. PESSI P.J., FOLATELLI G., ANDERSON J.P., et al.
2019ApJ...882...68S 145       D     X         4 27 ~ Observational signature of circumstellar interaction and 56Ni-mixing in the Type II Supernova 2016gfy. SINGH A., KUMAR B., MORIYA T.J., et al.
2019MNRAS.489L..69N 298           X C       6 9 ~ The aspherical explosion of the Type IIP SN 2017gmr+. NAGAO T., CIKOTA A., PATAT F., et al.
2019MNRAS.489..641M 17       D               1 42 ~ A comparison of explosion energies for simulated and observed core-collapse supernovae. MURPHY J.W., MABANTA Q. and DOLENCE J.C.
2019ApJ...885...43A viz 128           X C       2 36 30 SN 2017gmr: an energetic Type II-P supernova with asymmetries. ANDREWS J.E., SAND D.J., VALENTI S., et al.
2019A&A...631A...8H 1151     A D S   X C       26 19 38 Photometric and spectroscopic diversity of Type II supernovae. HILLIER D.J. and DESSART L.
2019MNRAS.489.5802V 17       D               1 72 28 Spectrophotometric templates for core-collapse supernovae and their application in simulations of time-domain surveys. VINCENZI M., SULLIVAN M., FIRTH R.E., et al.
2019ApJ...886...27W viz 238     A     X         6 178 ~ Type IIP supernova progenitors and their explodability. I. Convective overshoot, blue loops, and surface composition. WAGLE G.A., RAY A., DEV A., et al.
2019ApJ...887....4D 485       D     X C       11 73 ~ Carnegie Supernova Project-II: near-infrared spectroscopic diversity of Type II supernovae. DAVIS S., HSIAO E.Y., ASHALL C., et al.
2019MNRAS.489.3591P viz 145       D     X         4 164 31 Anomaly detection in the Open Supernova Catalog. PRUZHINSKAYA M.V., MALANCHEV K.L., KORNILOV M.V., et al.
2019MNRAS.490.1605D 230       D     X   F     5 25 ~ SN 2015an: a normal luminosity type II supernova with low expansion velocity at early phases. DASTIDAR R., MISRA K., VALENTI S., et al.
2019MNRAS.490.2042U 187       D     X   F     4 15 ~ Resolving the puzzle of type IIP SN 2016X. UTROBIN V.P. and CHUGAI N.N.
2019MNRAS.490.2799D 485       D     X C F     10 109 41 The Berkeley sample of Type II supernovae: BVRI light curves and spectroscopy of 55 SNe II. DE JAEGER T., ZHENG W., STAHL B.E., et al.
2020ApJ...889...86W 810     A     X         19 3 ~ Type IIP supernova progenitors. II. Stellar mass and obscuration by the dust in the circumstellar medium. WAGLE G.A. and RAY A.
2020ApJ...890..177K 104       D     X         3 19 ~ A new method to classify Type IIP/IIL supernovae based on their spectra. KOU S., CHEN X. and LIU X.
2020MNRAS.493.1761R viz 44           X         1 34 9 SN 2016gsd: an unusually luminous and linear Type II supernova with high velocities. REYNOLDS T.M., FRASER M., MATTILA S., et al.
2020MNRAS.494L..53F 17       D               1 19 ~ The uncertain masses of progenitors of core-collapse supernovae and direct-collapse black holes. FARRELL E.J., GROH J.H., MEYNET G., et al.
2020ApJ...894..118W 157     A     X         4 8 ~ Type IIP supernova progenitors. III. Blue to red supergiant ratio in low-metallicity models with convective overshoot. WAGLE G.A., RAY A. and RAGHU A.
2020ApJ...895L...3A 44           X         1 142 ~ Carnegie supernova Project-II: a new method to photometrically identify sub-types of extreme Type Ia supernovae. ASHALL C., LU J., BURNS C., et al.
2020ApJ...895...31B viz 132           X C       2 14 16 Discovery and rapid follow-up observations of the unusual Type II SN 2018ivc in NGC 1068. BOSTROEM K.A., VALENTI S., SAND D.J., et al.
2020MNRAS.494.5576P 87               F     1 24 ~ The mystery of photometric twins DES17X1boj and DES16E2bjy. PURSIAINEN M., GUTIERREZ C.P., WISEMAN P., et al.
2020MNRAS.494.5882R 131           X   F     2 61 ~ Luminous Type II supernovae for their low expansion velocities. RODRIGUEZ O., PIGNATA G., ANDERSON J.P., et al.
2020A&A...638A..47M 636 T   A S   X         13 17 ~ Connection of supernovae 2002ap, 2003gd,
2013ej, and 2019krl in M 74 with atomic gas accretion and spiral structure.
2020MNRAS.496.3402D 150       D     X         4 23 56 A measurement of the Hubble constant from Type II supernovae. DE JAEGER T., STAHL B.E., ZHENG W., et al.
2020MNRAS.496.4517S 61       D     X         2 46 22 The γ-ray deposition histories of core-collapse supernovae. SHARON A. and KUSHNIR D.
2020MNRAS.497.2227P 17       D               8 16 ~ Constraining early-time dust formation in core-collapse supernovae. PRIESTLEY F.D., BEVAN A., BARLOW M.J., et al.
2020ApJ...900...11W viz 1114     A S   X C       24 22 12 Late-time circumstellar interaction of SN 2017eaw in NGC 6946. WEIL K.E., FESEN R.A., PATNAUDE D.J., et al.
2020MNRAS.498...84Z 802       D     X C       18 19 23 SN 2018zd: an unusual stellar explosion as part of the diverse Type II Supernova landscape. ZHANG J., WANG X., JOZSEF V., et al.
2020A&A...641A.177M viz 17       D               1 288 ~ Stripped-envelope core-collapse supernova 56Ni masses. Persistently larger values than supernovae type II. MEZA N. and ANDERSON J.P.
2020MNRAS.499..974G 479           X   F     10 41 ~ SN 2017ivv: two years of evolution of a transitional Type II supernova. GUTIERREZ C.P., PASTORELLO A., JERKSTRAND A., et al.
2020A&A...642A..33D 104       D     X         3 7 ~ Radiative-transfer modeling of nebular-phase type II supernovae. Dependencies on progenitor and explosion properties. DESSART L. and HILLIER D.J.
2020A&A...642A.214K 44           X         1 21 15 Supernova explosions interacting with aspherical circumstellar material: implications for light curves, spectral line profiles, and polarization. KURFURST P., PEJCHA O. and KRTICKA J.
2020MNRAS.499.3544S 44           X         1 35 12 High-resolution spectroscopy of SN 2017hcc and its blueshifted line profiles from post-shock dust formation. SMITH N. and ANDREWS J.E.
2020ApJ...905L..19B 44           X         1 11 ~ Expansion and age of the supernova remnant G350.1-0.3: high-velocity iron ejecta from a core-collapse event. BORKOWSKI K.J., MILTICH W. and REYNOLDS S.P.
2021A&A...645L...7O 45           X         1 9 ~ Revisiting the progenitor of the low-luminosity type II-plateau supernova, SN 2008bk. O'NEILL D., KOTAK R., FRASER M., et al.
2021A&A...645A...6Z 90               F     4 34 29 Effect of binary evolution on the inferred initial and final core masses of hydrogen-rich, Type II supernova progenitors. ZAPARTAS E., DE MINK S.E., JUSTHAM S., et al.
2021ApJ...908...75B 18       D               1 556 32 The radio luminosity-risetime function of core-collapse supernovae. BIETENHOLZ M.F., BARTEL N., ARGO M., et al.
2021A&A...646A..22Y viz 179           X C       3 5 ~ Is supernova SN 2020faa an iPTF14hls look-alike? YANG S., SOLLERMAN J., CHEN T.-W., et al.
2021ApJ...909..145D 90             C       1 25 ~ SN 2013ai: a link between hydrogen-rich and hydrogen-poor core-collapse supernovae. DAVIS S., PESSI P.J., FRASER M., et al.
2021MNRAS.503.3472B 269           X C       5 36 7 ASASSN-18am/SN 2018gk: an overluminous Type IIb supernova from a massive progenitor. BOSE S., DONG S., KOCHANEK C.S., et al.
2021A&A...649A.134K 224           X C       4 69 4 Core-collapse supernova subtypes in luminous infrared galaxies. KANKARE E., EFSTATHIOU A., KOTAK R., et al.
2021ApJ...914...41J 90             C       1 18 8 A grid of core-collapse supernova remnant models. I. The effect of wind-driven mass loss. JACOVICH T., PATNAUDE D., SLANE P., et al.
2021MNRAS.505..116U 287       D     X   F     6 16 ~ Enormous explosion energy of Type IIP SN 2017gmr with bipolar 56Ni ejecta. UTROBIN V.P., CHUGAI N.N., ANDREWS J.E., et al.
2021MNRAS.505.3664N 3718 T K A D S   X C F     80 14 10 Evidence for multiple origins of fast declining Type II supernovae from spectropolarimetry of
SN 2013ej and SN 2017ahn.
2021MNRAS.505.4890L 1030           X C F     21 12 3 SN 2015bf: A fast declining type II supernova with flash-ionized signatures. LIN H., WANG X., ZHANG J., et al.
2021ApJ...916...21R viz 45           X         1 17 11 Toward precision cosmology with improved PNLF distances using VLT-MUSEI. Methodology and tests. ROTH M.M., JACOBY G.H., CIARDULLO R., et al.
2021A&A...651A..10D 45           X         1 10 ~ Polarization signatures of a high-velocity scatterer in nebular-phase spectra of Type II supernovae. DESSART L., HILLIER D.J. and LEONARD D.C.
2021A&A...651A..19D 90           X         2 16 ~ Multiepoch VLT-FORS spectropolarimetric observations of supernova 2012aw reveal an asymmetric explosion. DESSART L., LEONARD D.C., HILLIER D.J., et al.
2021ApJ...917...63A 45           X         1 23 13 The blue supergiant progenitor of the supernova imposter AT 2019krl. ANDREWS J.E., JENCSON J.E., VAN DYK S.D., et al.
2021A&A...652A..64D 467       D S   X C       9 14 16 The explosion of 9-29 M stars as Type II supernovae: Results from radiative-transfer modeling at one year after explosion. DESSART L., HILLIER D.J., SUKHBOLD T., et al.
2021MNRAS.506.4819P 645       D     X C       14 21 3 SN 2019hcc: a Type II supernova displaying early O II lines. PARRAG E., INSERRA C., SCHULZE S., et al.
2021MNRAS.508..516N 108       D     X         3 53 35 The search for failed supernovae with the Large Binocular Telescope: a new candidate and the failed SN fraction with 11 yr of data. NEUSTADT J.M.M., KOCHANEK C.S., STANEK K.Z., et al.
2021ApJ...919...17S 242       D     X         6 72 14 Spitzer's last look at extragalactic explosions: long-term evolution of interacting supernovae. SZALAI T., FOX O.D., ARENDT R.G., et al.
2021ApJ...921L..35L 2760     A     X C       61 5 4 A high-velocity scatterer revealed in the thinning ejecta of a Type II supernova. LEONARD D.C., DESSART L., HILLIER D.J., et al.
2021A&A...655A.105S viz 269           X C       5 22 12 The Type II supernova SN 2020jfo in M 61, implications for progenitor system, and explosion dynamics. SOLLERMAN J., YANG S., SCHULZE S., et al.
2022AJ....163...14B viz 19       D               1 285 ~ Galaxian contamination in Galactic reddening maps. BROWN P.J. and WALKER T.
2022MNRAS.509.2013Z 793           X C F     15 26 7 SN 2018hfm: a low-energy Type II supernova with prominent signatures of circumstellar interaction and dust formation. ZHANG X., WANG X., SAI H., et al.
2022ApJ...924...15J 234           X C       4 30 53 Final moments. I. Precursor emission, envelope inflation, and enhanced mass loss preceding the luminous Type II Supernova 2020tlf. JACOBSON-GALAN W.V., DESSART L., JONES D.O., et al.
2022ApJ...926...20T 94           X         2 16 25 The Early Phases of Supernova 2020pni: Shock Ionization of the Nitrogen-enriched Circumstellar Material. TERRERAN G., JACOBSON-GALAN W.V., GROH J.H., et al.
2022MNRAS.512.1541G 19       D               2 162 ~ Metallicity estimation of core-collapse Supernova H II regions in galaxies within 30 Mpc. GANSS R., PLEDGER J.L., SANSOM A.E., et al.
2022MNRAS.512.2777T 187           X   F     3 31 15 Progenitor and close-in circumstellar medium of type II supernova 2020fqv from high-cadence photometry and ultra-rapid UV spectroscopy. TINYANONT S., RIDDEN-HARPER R., FOLEY R.J., et al.
2022MNRAS.513.4556Z 65       D     X         2 41 1 SN 2019va: a Type IIP Supernova with Large Influence of Nickel-56 Decay on the Plateau-phase Light Curve. ZHANG X., WANG X., SAI H., et al.
2022ApJ...930...31B 19       D               1 90 3 Characterization of Supernovae Based on the Spectral-Temporal Energy Distribution: Two Possible SN Ib Subtypes. BENGYAT O. and GAL-YAM A.
2022MNRAS.514.4620D 20       D               1 26 26 A 5 per cent measurement of the Hubble-Lemaitre constant from Type II supernovae. DE JAEGER T., GALBANY L., RIESS A.G., et al.
2022RAA....22c5019S 48           X         1 9 10 Imprints of the Jittering Jets Explosion Mechanism in the Morphology of the Supernova Remnant SNR 0540-69.3. SOKER N.
2022MNRAS.514.5686P 19       D               2 87 9 Oxygen and calcium nebular emission line relationships in core-collapse supernovae and Ca-rich transients. PRENTICE S.J., MAGUIRE K., SIEBENALER L., et al.
2022ApJ...933...89S 47           X         1 8 3 Dust Production in a Thin Dense Shell in Supernovae with Early Circumstellar Interactions. SARANGI A. and SLAVIN J.D.
2022ApJ...933..194P 261     A     X         6 9 ~ Type IIP Supernova IV. Shock Breakout from Progenitor Stars Modeled with Convective Overshoot and Mass Loss. PALANI BALAJI H., RAY A., WAGLE G.A., et al.
2022MNRAS.515..897R 485       D     X   F     10 122 8 Luminosity distribution of Type II supernova progenitors. RODRIGUEZ O.
2022ApJ...934..134V 467           X C       9 17 10 Early-time Ultraviolet Spectroscopy and Optical Follow-up Observations of the Type IIP Supernova 2021yja. VASYLYEV S.S., FILIPPENKO A.V., VOGL C., et al.
2022MNRAS.516.2171U 47           X         1 7 2 Understanding the secular evolution of NGC 628 using UltraViolet Imaging Telescope. UJJWAL K., KARTHA S.S., SUBRAMANIAN S., et al.
2022MNRAS.517.1483D 140           X   F     2 17 12 Explosion imminent: the appearance of red supergiants at the point of core-collapse. DAVIES B., PLEZ B. and PETRAULT M.
2022A&A...666A..82R 280           X C       5 18 ~ Type IIP supernova SN2016X in radio frequencies. RUIZ-CARMONA R., SFARADI I. and HORESH A.
2022ApJ...939..105B 93       S             1 121 10 Seven Years of Coordinated Chandra-NuSTAR Observations of SN 2014C Unfold the Extreme Mass-loss History of Its Stellar Progenitor. BRETHAUER D., MARGUTTI R., MILISAVLJEVIC D., et al.
2022ApJ...941L...4N 47           X         1 15 1 Diversity of Dust Properties in External Galaxies Confirmed by Polarization Signals from Type II Supernovae. NAGAO T., PATAT F., MAEDA K., et al.
2023ApJ...944..110M 120       D     X         3 110 4 Comparing the Locations of Supernovae to CO (2-1) Emission in Their Host Galaxies. MAYKER CHEN N., LEROY A.K., LOPEZ L.A., et al.
2023ApJ...945..107P 100             C       1 39 5 Circumstellar Medium Interaction in SN 2018lab, A Low-luminosity Type IIP Supernova Observed with TESS. PEARSON J., HOSSEINZADEH G., SAND D.J., et al.
2023ApJ...947...42B 20       D               2 34 1 X-Ray-luminous Supernovae: Threats to Terrestrial Biospheres. BRUNTON I.R., O'MAHONEY C., FIELDS B.D., et al.
2023ApJ...949L..12A 20       D               1 56 3 Constraining High-energy Neutrino Emission from Supernovae with IceCube. ABBASI R., ACKERMANN M., ADAMS J., et al.
2023ApJ...949...75V 50           X         1 9 2 The Type II-P Supernova 2019mhm and Constraints on its Progenitor System. VAZQUEZ J., KILPATRICK C.D., DIMITRIADIS G., et al.
2023MNRAS.518.5741S 120       D     X         3 22 5 What can Gaussian processes really tell us about supernova light curves? Consequences for Type II(b) morphologies and genealogies. STEVANCE H.F. and LEE A.
2023MNRAS.519..248A 250           X   F     4 46 3 Photometric and spectroscopic analysis of the Type II SN 2020jfo with a short plateau. AILAWADHI B., DASTIDAR R., MISRA K., et al.
2023MNRAS.519..471V 980   K A S   X C F     17 41 8 The disappearances of six supernova progenitors. VAN DYK S.D., DE GRAW A., BAER-WAY R., et al.
2023ApJ...953L..18B 50           X         1 17 ~ SN 2022acko: The First Early Far-ultraviolet Spectra of a Type IIP Supernova. BOSTROEM K.A., DESSART L., HILLIER D.J., et al.
2023A&A...675A..33D 370       D     X         8 20 ~ The morphing of decay powered to interaction powered Type II supernova ejecta at nebular times. DESSART L., GUTIERREZ C.P., KUNCARAYAKTI H., et al.

goto View the references in ADSLimited to 100


© Université de Strasbourg/CNRS

    • Contact