Kepler-1657 , the SIMBAD biblio

Kepler-1657 , the SIMBAD biblio (25 results) C.D.S. - SIMBAD4 rel 1.8 - 2022.11.27CET01:07:39


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2013ApJ...776...10W 16       D               1 50 28 Planet hunters. V. A confirmed jupiter-size planet in the habitable zone and 42 planet candidates from the Kepler archive data. WANG J., FISCHER D.A., BARCLAY T., et al.
2014AJ....147..119C viz 16       D               1 8008 55 Contamination in the Kepler field. Identification of 685 KOIs as false positives via ephemeris matching based on Q1-Q12 data. COUGHLIN J.L., THOMPSON S.E., BRYSON S.T., et al.
2015ApJ...798...66D 161           X         4 296 52 The photoeccentric effect and proto-hot jupiters. III. A paucity of proto-hot jupiters on super-eccentric orbits. DAWSON R.I., MURRAY-CLAY R.A. and JOHNSON J.A.
2015ApJ...801....3M viz 16       D               1 3357 52 Photometric amplitude distribution of stellar rotation of KOIs–Indication for spin-orbit alignment of cool stars and high obliquity for hot stars. MAZEH T., PERETS H.B., McQUILLAN A., et al.
2015ApJS..217...16R viz 16       D               1 8625 84 Planetary candidates observed by Kepler. V. Planet sample from Q1-Q12 (36 months). ROWE J.F., COUGHLIN J.L., ANTOCI V., et al.
2015ApJ...807..170H viz 16       D               1 2117 10 Time variation of Kepler transits induced by stellar Spots–A way to distinguish between prograde and retrograde motion. II. Application to KOIs. HOLCZER T., SHPORER A., MAZEH T., et al.
2015ApJ...809....8B viz 16       D               1 112329 139 Terrestrial planet occurrence rates for the Kepler GK dwarf sample. BURKE C.J., CHRISTIANSEN J.L., MULLALLY F., et al.
2015ApJ...814..130M viz 16       D               1 2846 46 An increase in the mass of planetary systems around lower-mass stars. MULDERS G.D., PASCUCCI I. and APAI D.
2016ApJ...822...86M viz 16       D               1 6129 192 False positive probabilities for all Kepler objects of interest: 1284 newly validated planets and 428 likely false positives. MORTON T.D., BRYSON S.T., COUGHLIN J.L., et al.
2016ApJ...825...98H 16       D               1 166 45 Warm jupiters are less lonely than hot jupiters: close neighbors. HUANG C., WU Y. and TRIAUD A.H.M.J.
2016ApJS..225....9H viz 16       D               1 2132 33 Transit timing observations from Kepler. IX. Catalog of the full long-cadence data set. HOLCZER T., MAZEH T., NACHMANI G., et al.
2017AJ....153...71F viz 16       D               1 3575 46 The Kepler follow-up observation program. I. A catalog of companions to Kepler stars from high-resolution imaging. FURLAN E., CIARDI D.R., EVERETT M.E., et al.
2017MNRAS.465.2634A viz 16       D               1 5400 9 Transit shapes and self-organizing maps as a tool for ranking planetary candidates: application to Kepler and K2. ARMSTRONG D.J., POLLACCO D. and SANTERNE A.
2017AJ....154..107P viz 16       D               1 1306 56 The California-Kepler Survey. I. High-resolution spectroscopy of 1305 stars hosting Kepler transiting planets. PETIGURA E.A., HOWARD A.W., MARCY G.W., et al.
2017AJ....154..108J viz 16       D               1 3237 46 The California-Kepler Survey. II. Precise physical properties of 2025 Kepler planets and their host stars. JOHNSON J.A., PETIGURA E.A., FULTON B.J., et al.
2018ApJS..234....9O viz 17       D               1 436 4 A spectral approach to transit timing variations. OFIR A., XIE J.-W., JIANG C.-F., et al.
2018ApJ...855..115B viz 17       D               1 1305 2 Identifying young Kepler planet host stars from Keck-HIRES spectra of lithium. BERGER T.A., HOWARD A.W. and BOESGAARD A.M.
2018MNRAS.474.2094A viz 17       D               1 1073 17 Inferring probabilistic stellar rotation periods using Gaussian processes. ANGUS R., MORTON T., AIGRAIN S., et al.
2018ApJ...861..149F viz 17       D               1 2261 ~ The Kepler Follow-up Observation Program. II. Stellar parameters from medium- and high-resolution spectroscopy. FURLAN E., CIARDI D.R., COCHRAN W.D., et al.
2018AJ....156...50G 17       D               1 54 ~ The best planets to harbor detectable exomoons. GUIMARAES A. and VALIO A.
2018ApJ...866...99B viz 17       D               1 7129 101 Revised radii of Kepler stars and planet's using Gaia Data Release 2. BERGER T.A., HUBER D., GAIDOS E., et al.
2019A&A...623A.104H 724   K       X C       16 20 ~ SOPHIE velocimetry of Kepler transit candidates. XIX. The transiting temperate giant planet
KOI-3680b.
HEBRARD G., BONOMO A.S., DIAZ R.F., et al.
2019ApJ...875...29M viz 17       D               1 2918 ~ A spectroscopic analysis of the California-Kepler Survey sample. I. Stellar parameters, planetary radii, and a slope in the radius gap. MARTINEZ C.F., CUNHA K., GHEZZI L., et al.
2020ApJ...890...23L viz 17       D               1 4935 ~ Current population statistics do not favor photoevaporation over core-powered mass loss as the dominant cause of the exoplanet radius gap. LOYD R.O.P., SHKOLNIK E.L., SCHNEIDER A.C., et al.
2020AJ....160..108B viz 17       D               1 6855 ~ The Gaia-Kepler stellar properties catalog. II. Planet radius demographics as a function of stellar mass and age. BERGER T.A., HUBER D., GAIDOS E., et al.

goto View the references in ADS


2022.11.27-01:07:40

© Université de Strasbourg/CNRS

    • Contact