other query modes : |
Identifier query |
Coordinate query |
Criteria query |
Reference query |
Basic query |
Script submission |
TAP |
Output options |
Help |
PTF 12dam , the SIMBAD biblio (143 results) | C.D.S. - SIMBAD4 rel 1.8 - 2023.01.27CET02:03:58 |
Bibcode/DOI | Score |
in Title|Abstract| Keywords |
in a table | in teXt, Caption, ... | Nb occurence | Nb objects in ref |
Citations (from ADS) |
Title | First 3 Authors |
---|---|---|---|---|---|---|---|---|---|
2013ApJ...771..136L | 94 | D | C | 2 | 23 | 33 | Superluminous x-rays from a superluminous supernova. | LEVAN A.J., READ A.M., METZGER B.D., et al. | |
2013ApJ...778..168K | 236 | X C | 5 | 8 | 3 | A plausible (Overlooked) super-luminous supernova in the Sloan Digital Sky Survey Stripe 82 data. | KOSTRZEWA-RUTKOWSKA Z., KOZLOWSKI S., WYRZYKOWSKI L., et al. | ||
2014MNRAS.437..656M ![]() |
1590 | A | D | X C | 40 | 19 | 58 | The superluminous supernova PS1-11ap: bridging the gap between low and high redshift. | McCRUM M., SMARTT S.J., KOTAK R., et al. |
2014MNRAS.437.3848L | 40 | X | 1 | 42 | 38 | Bolometric corrections for optical light curves of core-collapse supernovae. | LYMAN J.D., BERSIER D. and JAMES P.A. | ||
2014MNRAS.438.3119Y | 41 | X | 1 | 7 | 18 | Type Ic core-collapse supernova explosions evolved from very massive stars. | YOSHIDA T., OKITA S. and UMEDA H. | ||
2013Natur.502..346N | 12 | 6 | 148 | Slowly fading super-luminous supernovae that are not pair-instability explosions. | NICHOLL M., SMARTT S.J., JERKSTRAND A., et al. | ||||
2014ApJ...787..138L | 374 | D | X C | 9 | 32 | 122 | Hydrogen-poor superluminous supernovae and long-duration gamma-ray bursts have similar host galaxies. | LUNNAN R., CHORNOCK R., BERGER E., et al. | |
2014ApJ...795..142G ![]() |
16 | D | 1 | 448 | 7 | Defining photometric peculiar type Ia supernovae. | GONZALEZ-GAITAN S., HSIAO E.Y., PIGNATA G., et al. | ||
2014ApJ...796...87I | 374 | D | X | 10 | 28 | 57 | Superluminous supernovae as standardizable candles and high-redshift distance probes. | INSERRA C. and SMARTT S.J. | |
2014MNRAS.444.2096N | 336 | D | X C | 8 | 17 | 100 | Superluminous supernovae from PESSTO. | NICHOLL M., SMARTT S.J., JERKSTRAND A., et al. | |
2015ApJ...798...12V | 122 | X | 3 | 19 | 48 | A luminous, fast rising UV-transient discovered by ROTSE: a tidal disruption event? | VINKO J., YUAN F., QUIMBY R.M., et al. | ||
2015ApJ...799..107W | 163 | X C | 3 | 15 | 38 | Superluminous supernovae powered by magnetars: late-time light curves and hard emission leakage. | WANG S.Q., WANG L.J., DAI Z.G., et al. | ||
2015MNRAS.448.1206M ![]() |
779 | D | X C | 19 | 272 | 48 | Selecting superluminous supernovae in faint galaxies from the first year of the Pan-STARRS1 Medium Deep Survey. | McCRUM M., SMARTT S.J., REST A., et al. | |
2012ATel.4121....1Q | 197 | T | X | 4 | 2 | 9 | Discovery of a super-luminous supernova, PTF 12dam. | QUIMBY R.M., ARCAVI I., STERNBERG A., et al. | |
2015MNRAS.449..917L | 220 | D | X | 6 | 29 | 105 | Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies. | LELOUDAS G., SCHULZE S., KRUHLER T., et al. | |
2015AstL...41...95B | 5 | 3 | 16 | Hydrogenless superluminous supernova PTF12dam in the model of an explosion inside an extended envelope. | BAKLANOV P.V., SOROKINA E.I. and BLINNIKOV S.I. | ||||
2015MNRAS.451L..65T | 695 | T K A | D | X F | 16 | 2 | 27 |
A young stellar environment for the superluminous supernova PTF12dam. |
THONE C.C., DE UGARTE POSTIGO A., GARCIA-BENITO R., et al. |
2015ApJ...807L..18N | 366 | A | D | X C | 9 | 12 | 61 | LSQ14bdq: a type IC super-luminous supernova with a double-peaked light curve. | NICHOLL M., SMARTT S.J., JERKSTRAND A., et al. |
2015MNRAS.452.1567C | 4619 | T K A | D | S X C | 113 | 23 | 69 |
The host galaxy and late-time evolution of the superluminous supernova PTF12dam. |
CHEN T.-W., SMARTT S.J., JERKSTRAND A., et al. |
2015MNRAS.452.3869N | 459 | D | X | 12 | 55 | 86 | On the diversity of superluminous supernovae: ejected mass as the dominant factor. | NICHOLL M., SMARTT S.J., JERKSTRAND A., et al. | |
2015ApJ...814..108Y | 367 | K | X C | 8 | 9 | 57 | Detection of broad Hα emission lines in the late-time spectra of a hydrogen-poor superluminous supernova. | YAN L., QUIMBY R., OFEK E., et al. | |
2015MNRAS.454.4357K | 790 | K A | X C | 19 | 5 | 19 | Can pair-instability supernova models match the observations of superluminous supernovae? | KOZYREVA A. and BLINNIKOV S. | |
2014ATel.5718....1L | 40 | X | 1 | 9 | 6 | PESSTO spectroscopic classification of optical transients. | LEGET P.-F., LE GUILLOU L., FLEURY M., et al. | ||
2016Sci...351..257D | 89 | X | 2 | 12 | 102 | ASASSN-15lh: A highly super-luminous supernova. | DONG S., SHAPPEE B.J., PRIETO J.L., et al. | ||
2016ApJ...817..132D | 45 | X | 1 | 10 | 45 | The most luminous supernova ASASSN-15lh: signature of a newborn rapidly rotating strange quark star. | DAI Z.G., WANG S.Q., WANG J.S., et al. | ||
2016MNRAS.455.3207J | 1001 | K A | S X C F | 22 | 9 | 25 | Nebular spectra of pair-instability supernovae. | JERKSTRAND A., SMARTT S.J. and HEGER A. | |
2016ApJ...818L...8S | 46 | X | 1 | 7 | 39 | DES14X3taz: a Type I superluminous supernova showing a luminous, rapidly cooling initial pre-peak bump. | SMITH M., SULLIVAN M., D'ANDREA C.B., et al. | ||
2016ApJ...819...51L | 82 | C | 1 | 18 | 20 | Late time multi-wavelength observations of Swift J1644+5734: a luminous Optical/IR bump and quiescent X-ray emission. | LEVAN A.J., TANVIR N.R., BROWN G.C., et al. | ||
2015ATel.7102....1L | 40 | X | 1 | 10 | 6 | PESSTO spectroscopic classification of optical transients. | LE GUILLOU L., MITRA A., BAUMONT S., et al. | ||
2015ATel.7209....1F | 41 | X | 1 | 6 | 6 | PESSTO spectroscopic classification of optical transients. | FRASER M., SMITH M., FIRTH R., et al. | ||
2016MNRAS.458...84A ![]() |
41 | X | 1 | 127 | 37 | A Hubble Space Telescope survey of the host galaxies of Superluminous Supernovae. | ANGUS C.R., LEVAN A.J., PERLEY D.A., et al. | ||
2016ApJ...826...39N | 1384 | X C | 33 | 18 | 60 | SN 2015BN: a detailed multi-wavelength view of a nearby superluminous supernova. | NICHOLL M., BERGER E., SMARTT S.J., et al. | ||
2016MNRAS.460L..55M | 16 | D | 1 | 23 | 10 | Constraining the ellipticity of strongly magnetized neutron stars powering superluminous supernovae. | MORIYA T.J. and TAURIS T.M. | ||
2016MNRAS.460.3232C | 16 | D | 1 | 128 | 5 | Physical conditions and element abundances in supernova and γ-ray burst host galaxies at different redshifts. | CONTINI M. | ||
2016ApJ...828L..18N | 84 | X | 2 | 9 | 34 | Superluminous supernova SN 2015bn in the nebular phase: evidence for the engine-powered explosion of a stripped massive star. | NICHOLL M., BERGER E., MARGUTTI R., et al. | ||
2016A&A...593A.115J | 16 | D | 1 | 31 | 11 | Taking stock of superluminous supernovae and long gamma-ray burst host galaxy comparison using a complete sample of LGRBs. | JAPELJ J., VERGANI S.D., SALVATERRA R., et al. | ||
2016ApJ...830...13P ![]() |
789 | D | X C | 19 | 42 | 72 | Host-galaxy properties of 32 low-redshift superluminous supernovae from the Palomar transient factory. | PERLEY D.A., QUIMBY R.M., YAN L., et al. | |
2016ApJ...831...79I | 44 | X | 1 | 11 | 35 | Spectropolarimetry of superluminous supernovae: insight into their geometry. | INSERRA C., BULLA M., SIM S.A., et al. | ||
2016ApJ...831..144L | 449 | X C | 10 | 14 | 40 | PS1-14bj: a hydrogen-poor superluminous supernova with a long rise and slow decay. | LUNNAN R., CHORNOCK R., BERGER E., et al. | ||
2016MNRAS.463..296L ![]() |
16 | D | 1 | 105 | 14 | Slow-blue nuclear hypervariables in PanSTARRS-1. | LAWRENCE A., BRUCE A.G., MacLEOD C., et al. | ||
2017ApJ...835L...8N | 290 | X F | 6 | 13 | 29 | An ultraviolet excess in the superluminous supernova Gaia16apd reveals a powerful central engine. | NICHOLL M., BERGER E., MARGUTTI R., et al. | ||
2017ApJ...835...13J | 83 | X | 2 | 22 | 41 | Long-duration superluminous supernovae at late times. | JERKSTRAND A., SMARTT S.J., INSERRA C., et al. | ||
2017ApJ...835...58V ![]() |
4076 | K A | D | S X C | 98 | 14 | 27 | On the early-time excess emission in hydrogen-poor superluminous supernovae. | VREESWIJK P.M., LELOUDAS G., GAL-YAM A., et al. |
2016A&A...596A..67R | 650 | X C | 15 | 60 | 9 | SN 2012aa: A transient between Type Ibc core-collapse and superluminous supernovae. | ROY R., SOLLERMAN J., SILVERMAN J.M., et al. | ||
2017ApJ...835..177M | 42 | X | 1 | 7 | 11 | Properties of magnetars mimicking 56Ni-powered light curves in Type Ic superluminous supernovae. | MORIYA T.J., CHEN T.-W. and LANGER N. | ||
2017ApJ...835..266T | 1282 | T K A | D | X C | 30 | 2 | 12 |
Pulsational pair-instability model for superluminous supernova PTF12dam: interaction and radioactive decay. |
TOLSTOV A., NOMOTO K., BLINNIKOV S., et al. |
2016MNRAS.463.2972N | 41 | X | 1 | 8 | 6 | Type Ia supernovae within dense carbon- and oxygen-rich envelopes: a model for 'Super-Chandrasekhar' explosions? | NOEBAUER U.M., TAUBENBERGER S., BLINNIKOV S., et al. | ||
2017MNRAS.466.1428G | 168 | X | 4 | 11 | 34 | The unexpected, long-lasting, UV rebrightening of the superluminous supernova ASASSN-15lh. | GODOY-RIVERA D., STANEK K.Z., KOCHANEK C.S., et al. | ||
2017MNRAS.464.2854K | 1037 | K | S X C F | 22 | 4 | 33 | Fast evolving pair-instability supernova models: evolution, explosion, light curves. | KOZYREVA A., GILMER M., HIRSCHI R., et al. | |
2017MNRAS.464.3568P | 17 | D | 2 | 25 | 31 | The volumetric rate of superluminous supernovae at z ∼ 1. | PRAJS S., SULLIVAN M., SMITH M., et al. | ||
2017ApJ...840...12Y | 140 | D | X | 4 | 38 | 21 | A statistical study of superluminous supernovae using the magnetar engine model and implications for their connection with gamma-ray bursts and hypernovae. | YU Y.-W., ZHU J.-P., LI S.-Z., et al. | |
2017ApJ...840...57Y | 166 | X | 4 | 22 | 33 | Far-ultraviolet to near-infrared spectroscopy of a nearby hydrogen-poor superluminous supernova Gaia16apd. | YAN L., QUIMBY R., GAL-YAM A., et al. | ||
2017ApJ...842...26L | 387 | D | X C | 9 | 26 | 15 | A Monte Carlo approach to magnetar-powered transients. I. Hydrogen-deficient superluminous supernovae. | LIU L.-D., WANG S.-Q., WANG L.-J., et al. | |
2017A&A...602A...9C | 289 | X | 7 | 25 | 28 | The evolution of superluminous supernova LSQ14mo and its interacting host galaxy system. | CHEN T.-W., NICHOLL M., SMARTT S.J., et al. | ||
2017MNRAS.468.4642I | 1342 | K A | X C F | 31 | 35 | 26 | Complexity in the light curves and spectra of slow-evolving superluminous supernovae. | INSERRA C., NICHOLL M., CHEN T.-W., et al. | |
2017MNRAS.469.1246K | 949 | X C | 22 | 13 | 26 | Gaia16apd - a link between fast and slowly declining type I superluminous supernovae. | KANGAS T., BLAGORODNOVA N., MATTILA S., et al. | ||
2017ApJ...845L...2T | 248 | X | 6 | 6 | 6 | Ultraviolet light curves of Gaia16apd in superluminous supernova models. | TOLSTOV A., ZHIGLO A., NOMOTO K., et al. | ||
2017ApJ...845...85L ![]() |
181 | D | X | 5 | 47 | 35 | Analyzing the largest spectroscopic data set of hydrogen-poor super-luminous supernovae. | LIU Y.-Q., MODJAZ M. and BIANCO F.B. | |
2017MNRAS.469.4705C | 2059 | T K A | D | S X C | 48 | 6 | 6 |
Spatially resolved analysis of superluminous supernovae PTF 11hrq and PTF 12dam host galaxies. |
CIKOTA A., DE CIA A., SCHULZE S., et al. |
2017ApJ...846..100G | 83 | X | 2 | 6 | 8 | Pair-instability supernova simulations: progenitor evolution, explosion, and light curves. | GILMER M.S., KOZYREVA A., HIRSCHI R., et al. | ||
2017MNRAS.470.3566C | 429 | D | X F | 10 | 22 | 37 | Superluminous supernova progenitors have a half-solar metallicity threshold. | CHEN T.-W., SMARTT S.J., YATES R.M., et al. | |
2017ApJ...848....6Y | 166 | X C | 3 | 23 | 26 | Hydrogen-poor superluminous supernovae with late-time Hα emission: three events from the intermediate Palomar Transient Factory. | YAN L., LUNNAN R., PERLEY D.A., et al. | ||
2017ApJ...849L...4C | 59 | D | X | 2 | 10 | 14 | Spatially resolved MaNGA observations of the host galaxy of superluminous supernova 2017egm. | CHEN T.-W., SCHADY P., XIAO L., et al. | |
2017ApJ...850...55N | 181 | D | X C | 4 | 41 | 37 | The magnetar model for Type I superluminous supernovae. I. Bayesian analysis of the full multicolor light-curve sample with MOSFiT. | NICHOLL M., GUILLOCHON J. and BERGER E. | |
2017ApJ...851...95S | 16 | D | 1 | 24 | 13 | Magnetar-powered superluminous supernovae must first be exploded by jets. | SOKER N. and GILKIS A. | ||
2018ApJ...852...81L ![]() |
42 | X | 1 | 32 | 24 | Hydrogen-poor superluminous supernovae from the Pan-STARRS1 Medium Deep Survey. | LUNNAN R., CHORNOCK R., BERGER E., et al. | ||
2018MNRAS.473.1258S | 476 | D | X F | 11 | 75 | 37 | Cosmic evolution and metal aversion in superluminous supernova host galaxies. | SCHULZE S., KRUHLER T., LELOUDAS G., et al. | |
2018ApJ...853...57B | 209 | X C | 4 | 27 | 23 | Gaia17biu/SN 2017egm in NGC 3191: the closest hydrogen-poor superluminous supernova to date is in a "normal," massive, metal-rich spiral galaxy. | BOSE S., DONG S., PASTORELLO A., et al. | ||
2018ApJ...854..175I | 100 | D | C | 2 | 48 | 6 | A statistical approach to identify superluminous supernovae and probe their diversity. | INSERRA C., PRAJS S., GUTIERREZ C.P., et al. | |
2018ApJ...855....2Q | 4849 | A | D | X C | 116 | 63 | 10 | Spectra of hydrogen-poor superluminous supernovae from the Palomar Transient Factory. | QUIMBY R.M., DE CIA A., GAL-YAM A., et al. |
2018A&A...610A..11I | 43 | X | 1 | 8 | 8 | The host of the Type I SLSN 2017egm. A young, sub-solar metallicity environment in a massive spiral galaxy. | IZZO L., THONE C.C., GARCIA-BENITO R., et al. | ||
2018ApJ...856...56C | 42 | X | 1 | 26 | 9 | Jets in hydrogen-poor superluminous supernovae: constraints from a comprehensive analysis of radio observations. | COPPEJANS D.L., MARGUTTI R., GUIDORZI C., et al. | ||
2018MNRAS.475.2659M | 43 | X | 1 | 10 | 19 | The GRB-SLSN connection: misaligned magnetars, weak jet emergence, and observational signatures. | MARGALIT B., METZGER B.D., THOMPSON T.A., et al. | ||
2016ATel.9074....1B | 41 | X | 1 | 3 | 2 | Swift/UVOT Observations for SLSN-I Gaia16apd. | BLAGORODNOVA N., YAN L., QUIMBY R., et al. | ||
2018ApJ...857...72H | 309 | D | X C | 7 | 12 | 1 | Obscured star formation in the host galaxies of superluminous supernovae. | HATSUKADE B., TOMINAGA N., HAYASHI M., et al. | |
2018A&A...611A..45R | 150 | A | X | 4 | 47 | 6 | Search for γ-ray emission from superluminous supernovae with the Fermi-LAT. | RENAULT-TINACCI N., KOTERA K., NERONOV A., et al. | |
2018ApJ...858...91Y | 878 | K A | D | X | 22 | 9 | 5 | Far-UV HST spectroscopy of an unusual hydrogen-poor superluminous supernova: SN2017egm. | YAN L., PERLEY D.A., DE CIA A., et al. |
2018ApJ...860..100D ![]() |
1187 | D | X C | 28 | 42 | 24 | Light curves of hydrogen-poor superluminous supernovae from the Palomar Transient Factory. | DE CIA A., GAL-YAM A., RUBIN A., et al. | |
2018MNRAS.478..110S | 460 | X C | 10 | 16 | ~ | Broad-band emission properties of central engine-powered supernova ejecta interacting with a circumstellar medium. | SUZUKI A. and MAEDA K. | ||
2018ApJ...864...45M ![]() |
1379 | A | D | S X C | 32 | 37 | 18 | Results from a systematic survey of X-ray emission from hydrogen-poor superluminous SNe. | MARGUTTI R., CHORNOCK R., METZGER B.D., et al. |
2018ApJ...865....9B | 293 | X C | 6 | 18 | 3 | The Type I superluminous supernova PS16aqv: lightcurve complexity and deep limits on radioactive ejecta in a fast event. | BLANCHARD P.K., NICHOLL M., BERGER E., et al. | ||
2018MNRAS.479.4984C | 42 | X | 1 | 10 | ~ | Testing the magnetar scenario for superluminous supernovae with circular polarimetry. | CIKOTA A., LELOUDAS G., BULLA M., et al. | ||
2018NatAs...2..887L | 14 | ~ | A UV resonance line echo from a shell around a hydrogen-poor superluminous supernova. | LUNNAN R., FRANSSON C., VREESWIJK P.M., et al. | |||||
2018ApJ...867..113M | 17 | D | 2 | 37 | ~ | Systematic investigation of the fallback accretion-powered model for hydrogen-poor superluminous supernovae. | MORIYA T.J., NICHOLL M. and GUILLOCHON J. | ||
2018ApJ...868L..24L | 125 | X C | 2 | 7 | ~ | Photospheric radius evolution of homologous explosions. | LIU L.-D., ZHANG B., WANG L.-J., et al. | ||
2018MNRAS.481.2407M | 293 | X C F | 5 | 9 | ~ | Unveiling the engines of fast radio bursts, superluminous supernovae, and gamma-ray bursts. | MARGALIT B., METZGER B.D., BERGER E., et al. | ||
2018ApJ...869..166V | 17 | D | 1 | 58 | ~ | Superluminous supernovae in LSST: rates, detection metrics, and light-curve modeling. | VILLAR V.A., NICHOLL M. and BERGER E. | ||
2018A&A...620A..67A | 251 | X C | 5 | 25 | ~ | A nearby super-luminous supernova with a long pre-maximum & "plateau" and strong C II features. | ANDERSON J.P., PESSI P.J., DESSART L., et al. | ||
2019ApJ...871..102N | 443 | D | S X C | 9 | 20 | ~ | Nebular-phase spectra of superluminous supernovae: physical insights from observational and statistical properties. | NICHOLL M., BERGER E., BLANCHARD P.K., et al. | |
2019MNRAS.482.1545S ![]() |
102 | D | F | 2 | 320 | ~ | The Berkeley sample of stripped-envelope supernovae. | SHIVVERS I., FILIPPENKO A.V., SILVERMAN J.M., et al. | |
2019A&A...621A.141D | 468 | X C | 10 | 16 | ~ | Simulations of light curves and spectra for superluminous Type Ic supernovae powered by magnetars. | DESSART L. | ||
2019MNRAS.484.3443M | 43 | X | 1 | 7 | ~ | Synthetic spectra of energetic core-collapse supernovae and the early spectra of SN 2007bi and SN 1999as. | MORIYA T.J., MAZZALI P.A. and TANAKA M. | ||
2019MNRAS.484.3451M | 43 | X | 1 | 7 | ~ | The nature of PISN candidates: clues from nebular spectra. | MAZZALI P.A., MORIYA T.J., TANAKA M., et al. | ||
2019ApJ...874...68C | 60 | D | X | 2 | 32 | ~ | A systematic study of superluminous supernova light-curve models using clustering. | CHATZOPOULOS E. and TUMINELLO R. | |
2019A&A...624A.143K | 255 | X C | 5 | 64 | ~ | Highly luminous supernovae associated with gamma-ray bursts. I. GRB 111209A/SN 2011kl in the context of stripped-envelope and superluminous supernovae. | KANN D.A., SCHADY P., OLIVARES F.E., et al. | ||
2019RAA....19...63W | 255 | X | 6 | 28 | ~ | The Energy Sources of Superluminous Supernovae. | WANG S.-Q., WANG L.-J. and DAI Z.-G. | ||
2019ApJ...882..102G | 468 | X C | 10 | 11 | ~ | A simple analysis of Type I superluminous supernova peak spectra: composition, expansion velocities, and dynamics. | GAL-YAM A. | ||
2018ATel11674....1A | 42 | X | 1 | 3 | ~ | ePESSTO reclassification of SN2018bsz as the lowest redshift SLSN to date. | ANDERSON J.P., DESSART L., PESSI P., et al. | ||
2019ApJ...887...72L | 213 | X | 5 | 17 | ~ | Pulsational pair-instability supernovae. I. Pre-collapse evolution and pulsational mass ejection. | LEUNG S.-C., NOMOTO K. and BLINNIKOV S. | ||
2018ATel11714....1B | 42 | X | 1 | 2 | ~ | Classification of AT2018bym as a Type I Superluminous Supernova. | BLANCHARD P., GOMEZ S., BERGER E., et al. | ||
2019ApJ...887..169H ![]() |
170 | X C | 3 | 23 | ~ | Evidence for late-stage eruptive mass loss in the progenitor to SN2018gep, a broad-lined IC supernova: pre-explosion emission and a rapidly rising luminous transient. | HO A.Y.Q., GOLDSTEIN D.A., SCHULZE S., et al. | ||
2020ApJ...889...75L | 44 | X | 1 | 6 | ~ | Pulsational Pair-instability supernovae. II. Neutrino signals from pulsations and their detection by terrestrial neutrino detectors. | LEUNG S.-C., BLINNIKOV S., ISHIDOSHIRO K., et al. | ||
2020ApJ...890...51E | 87 | X | 2 | 6 | ~ | The explosion of helium stars evolved with mass loss. | ERTL T., WOOSLEY S.E., SUKHBOLD T., et al. | ||
2020A&A...634A.107Y | 17 | D | 2 | 144 | ~ | Present-day mass-metallicity relation for galaxies using a new electron temperature method. | YATES R.M., SCHADY P., CHEN T.-W., et al. | ||
2020ApJ...891...98L | 87 | X | 2 | 16 | ~ | The energy sources of double-peaked superluminous supernova PS1-12cil and luminous supernova SN 2012aa. | LI L., WANG S.-Q., LIU L.-D., et al. | ||
2020ApJ...892...28K | 2350 | A | D | X C | 54 | 20 | ~ | SN 2010kd: photometric and spectroscopic analysis of a slow-decaying superluminous supernova. | KUMAR A., PANDEY S.B., KONYVES-TOTH R., et al. |
2020MNRAS.493.5170H | 366 | D | X | 9 | 17 | ~ | Observing superluminous supernovae and long gamma-ray bursts as potential birthplaces of repeating fast radio bursts. | HILMARSSON G.H., SPITLER L.G., KEANE E.F., et al. | |
2020ApJ...897..114B | 17 | D | 1 | 67 | ~ | The pre-explosion mass distribution of hydrogen-poor superluminous supernova progenitors and new evidence for a mass-spin correlation. | BLANCHARD P.K., BERGER E., NICHOLL M., et al. | ||
2020MNRAS.497..318L | 1175 | X C F | 25 | 15 | ~ | SN 2018hti: a nearby superluminous supernova discovered in a metal-poor galaxy. | LIN W.L., WANG X.F., LI W.X., et al. | ||
2020A&A...640A..56R | 131 | X | 3 | 9 | ~ | Predictions for the hydrogen-free ejecta of pulsational pair-instability supernovae. | RENZO M., FARMER R., JUSTHAM S., et al. | ||
2020ApJ...901...61L ![]() |
131 | X | 3 | 27 | ~ | Four (super)luminous supernovae from the first months of the ZTF survey. | LUNNAN R., YAN L., PERLEY D.A., et al. | ||
2020ApJ...902L...8Y ![]() |
174 | X C | 3 | 13 | ~ | Helium-rich superluminous supernovae from the Zwicky Transient Facility. | YAN L., PERLEY D.A., SCHULZE S., et al. | ||
2020ApJ...903...66L | 44 | X | 1 | 3 | ~ | A model for the fast blue optical transient AT2018cow: circumstellar interaction of a pulsational pair-instability supernova. | LEUNG S.-C., BLINNIKOV S., NOMOTO K., et al. | ||
2020ApJ...904...74G | 17 | D | 1 | 145 | ~ | FLEET: a redshift-agnostic machine learning pipeline to rapidly identify hydrogen-poor superluminous supernovae. | GOMEZ S., BERGER E., BLANCHARD P.K., et al. | ||
2020A&A...643A..47O | 61 | D | X | 2 | 93 | ~ | The interacting nature of dwarf galaxies hosting superluminous supernovae. | ORUM S.V., IVENS D.L., STRANDBERG P., et al. | |
2021MNRAS.500.5142F | 18 | D | 2 | 114 | ~ | From core collapse to superluminous: the rates of massive stellar explosions from the Palomar Transient Factory. | FROHMAIER C., ANGUS C.R., VINCENZI M., et al. | ||
2021ApJ...909...24K | 108 | D | X | 3 | 93 | ~ | Photospheric velocity gradients and ejecta masses of hydrogen-poor superluminous supernovae: proxies for distinguishing between fast and slow events. | KONYVES-TOTH R. and VINKO J. | |
2021MNRAS.502.1678K | 833 | A | X C | 18 | 51 | ~ | SN 2020ank: a bright and fast-evolving H-deficient superluminous supernova. | KUMAR A., KUMAR B., PANDEY S.B., et al. | |
2021MNRAS.502.2120F | 152 | D | X C | 3 | 23 | ~ | SN 2017gci: a nearby Type I Superluminous Supernova with a bumpy tail. | FIORE A., CHEN T.-W., JERKSTRAND A., et al. | |
2021ApJ...912...21E | 806 | A | D | S X C | 17 | 125 | ~ | Late-time radio and millimeter observations of superluminous supernovae and long gamma-ray bursts: implications for central engines, fast radio bursts, and obscured star formation. | EFTEKHARI T., MARGALIT B., OMAND C.M.B., et al. |
2021ApJ...914L...2L | 63 | D | X | 2 | 5 | ~ | Supernova luminosity powered by magnetar-disk system. | LIN W., WANG X., WANG L., et al. | |
2021ApJ...914L..19Z | 90 | C | 1 | 2 | ~ | Thermonuclear explosions and accretion-induced collapses of white dwarfs in active galactic nucleus accretion disks. | ZHU J.-P., YANG Y.-P., ZHANG B., et al. | ||
2018ATel11969....1C | 42 | X | 1 | 12 | ~ | ePESSTO spectroscopic classification of optical transients | CALLIS E., KOSTRZEWA-RUTKOWSKA Z., FRASER M., et al. | ||
2021ApJ...915...80L | 45 | X | 1 | 12 | ~ | Fast blue optical transients due to circumstellar interaction and the mysterious supernova SN 2018gep. | LEUNG S.-C., FULLER J. and NOMOTO K. | ||
2018ATel12300....1P | 42 | X | 1 | 5 | ~ | ePESSTO spectroscopic classification of optical transients. | PURSIAINEN M., CASTRO-SEGURA N., SMITH M., et al. | ||
2021MNRAS.506.4819P | 90 | X | 2 | 21 | ~ | SN 2019hcc: a Type II supernova displaying early O II lines. | PARRAG E., INSERRA C., SCHULZE S., et al. | ||
2021MNRAS.507.1229P | 376 | D | X C F | 7 | 39 | ~ | Photometric, polarimetric, and spectroscopic studies of the luminous, slow-decaying Type Ib SN 2012au. | PANDEY S.B., KUMAR A., KUMAR B., et al. | |
2021MNRAS.508.4342P | 45 | X | 1 | 26 | ~ | Transitional events in the spectrophotometric regime between stripped envelope and superluminous supernovae. | PRENTICE S.J., INSERRA C., SCHULZE S., et al. | ||
2021ApJ...921...64B | 45 | X | 1 | 8 | ~ | Late-time Hubble Space Telescope observations of a hydrogen-poor superluminous supernova reveal the power-law decline of a magnetar central engine. | BLANCHARD P.K., BERGER E., NICHOLL M., et al. | ||
2021ApJ...922...17H | 959 | D | X C | 21 | 40 | ~ | A VLA survey of late-time radio emission from superluminous supernovae and the host galaxies. | HATSUKADE B., TOMINAGA N., MOROKUMA T., et al. | |
2019ATel12604....1C | 43 | X | 1 | 5 | ~ | GREAT followup of SN 2019cca/ZTF19aajwogx: a superluminous supernova at redshift 0.42. | CHEN T.-W., SCHWEYER T., INSERRA C., et al. | ||
2022MNRAS.511.5948P | 280 | K | X C | 5 | 22 | ~ | Post maximum light and late time optical imaging polarimetry of type I superluminous supernova 2020znr. | POIDEVIN F., OMAND C.M.B., PEREZ-FOURNON I., et al. | |
2022ApJ...928...77L | 233 | X C | 4 | 69 | ~ | Using the Optical-NIR Spectral Energy Distributions to Search for the Evidence of Dust Formation of 66 Supernovae. | LI J.-Y., WANG S.-Q., GAN W.-P., et al. | ||
2022ApJ...931...32Y | 187 | X C | 3 | 4 | ~ | Optical Observations and Modeling of the Superluminous Supernova 2018lfe. | YIN Y., GOMEZ S., BERGER E., et al. | ||
2022ApJ...931..153S | 65 | D | X | 2 | 84 | ~ | Constraints on the Explosion Timescale of Core-collapse Supernovae Based on Systematic Analysis of Light Curves. | SAITO S., TANAKA M., SAWADA R., et al. | |
2022MNRAS.514.5686P | 159 | D | X | 4 | 87 | ~ | Oxygen and calcium nebular emission line relationships in core-collapse supernovae and Ca-rich transients. | PRENTICE S.J., MAGUIRE K., SIEBENALER L., et al. | |
2022ApJ...933...14H | 19 | D | 1 | 35 | ~ | Bumpy Declining Light Curves Are Common in Hydrogen-poor Superluminous Supernovae. | HOSSEINZADEH G., BERGER E., METZGER B.D., et al. | ||
2022ApJ...933..102W | 93 | X | 2 | 4 | ~ | iPTF14hls in the Circumstellar Medium Interaction Model: A Promising Candidate for a Pulsational Pair-instability Supernova. | WANG L.-J., LIU L.-D., LIN W.-L., et al. | ||
2022A&A...666A..30P | 513 | X C | 10 | 43 | ~ | SN 2018bsz: A Type I superluminous supernova with aspherical circumstellar material. | PURSIAINEN M., LELOUDAS G., PARASKEVA E., et al. | ||
2022ApJ...940...69K | 205 | D | X | 5 | 32 | ~ | Premaximum Spectroscopic Diversity of Hydrogen-poor Superluminous Supernovae. | KONYVES-TOTH R. | |
2022A&A...667A..92O | 252 | D | X C F | 4 | 25 | ~ | Supernova double-peaked light curves from double-nickel distribution. | ORELLANA M. and BERSTEN M.C. | |
2022ApJ...941L..16A | 47 | X | 1 | 5 | ~ | Hard X-Ray Observations of the Hydrogen-poor Superluminous Supernova SN 2018hti with NuSTAR. | ANDREONI I., LU W., GREFENSTETTE B., et al. | ||
2022ApJ...941..107G | 47 | X | 1 | 238 | ~ | Luminous Supernovae: Unveiling a Population between Superluminous and Normal Core-collapse Supernovae. | GOMEZ S., BERGER E., NICHOLL M., et al. |
© Université de Strasbourg/CNRS
• Contact