Kepler-411 , the SIMBAD biblio

Kepler-411 , the SIMBAD biblio (71 results) C.D.S. - SIMBAD4 rel 1.8 - 2022.10.02CEST04:25:47


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2012ApJS..199...24T viz 16       D               1 5393 51 Detection of potential transit signals in the first three quarters of Kepler mission data. TENENBAUM P., CHRISTIANSEN J.L., JENKINS J.M., et al.
2012ApJ...754..129S 354           X C       8 90 23 Planet hunters: assessing the Kepler inventory of short-period planets. SCHWAMB M.E., LINTOTT C.J., FISCHER D.A., et al.
2012ApJ...756..185F viz 16       D               2 1856 44 Transit timing observations from Kepler. V. Transit timing variation candidates in the first sixteen months from polynomial models. FORD E.B., RAGOZZINE D., ROWE J.F., et al.
2012A&A...548A..44C 16       D               3 137 22 A study of the performance of the transit detection tool DST in space-based surveys. Application of the CoRoT pipeline to Kepler data. CABRERA J., CSIZMADIA Sz., ERIKSON A., et al.
2013ApJ...763...41C viz 16       D               1 97 40 On the relative sizes of planets within Kepler multiple-candidate systems. CIARDI D.R., FABRYCKY D.C., FORD E.B., et al.
2013ApJS..204...24B viz 16       D               1 3274 779 Planetary candidates observed by Kepler. III. Analysis of the first 16 months of data. BATALHA N.M., ROWE J.F., BRYSON S.T., et al.
2013ApJ...774L..12S viz 16       D               1 469 25 A lack of short-period multiplanet systems with close-proximity pairs and the curious case of Kepler-42. STEFFEN J.H. and FARR W.M.
2013ApJ...775L..11M viz 16       D               1 2010 107 Stellar rotation periods of the Kepler Objects of Interest: a dearth of close-in planets around fast rotators. McQUILLAN A., MAZEH T. and AIGRAIN S.
2013ApJS..208...16M viz 16       D               2 1518 92 Transit timing observations from Kepler. VIII. Catalog of transit timing measurements of the first twelve quarters. MAZEH T., NACHMANI G., HOLCZER T., et al.
2013MNRAS.436.1883W viz 16       D               1 961 86 Rotation periods, variability properties and ages for Kepler exoplanet candidate host stars. WALKOWICZ L.M. and BASRI G.S.
2013A&A...560A...4R viz 16       D               1 24132 153 Rotation and differential rotation of active Kepler stars. REINHOLD T., REINERS A. and BASRI G.
2014ApJS..210...19B viz 16       D               2 5860 162 Planetary candidates observed by Kepler IV: planet sample from Q1-Q8 (22 months). BURKE C.J., BRYSON S.T., MULLALLY F., et al.
2014ApJ...783....4W viz 16       D               1 487 55 Influence of stellar multiplicity on planet formation. I. Evidence of suppressed planet formation due to stellar companions within 20 AU and validation of four planets from the Kepler multiple planet candidates. WANG J., XIE J.-W., BARCLAY T., et al.
2014ApJ...783....9H 17       D               2 35 37 Measurements of stellar inclinations for Kepler planet candidates. II. Candidate spin-orbit misalignments in single- and multiple-transiting systems. HIRANO T., SANCHIS-OJEDA R., TAKEDA Y., et al.
2014ApJ...784...45R viz 16       D               1 1691 227 Validation of Kepler's multiple planet candidates. III. Light curve analysis and announcement of hundreds of new multi-planet systems. ROWE J.F., BRYSON S.T., MARCY G.W., et al.
2014AJ....147..119C viz 16       D               1 8006 55 Contamination in the Kepler field. Identification of 685 KOIs as false positives via ephemeris matching based on Q1-Q12 data. COUGHLIN J.L., THOMPSON S.E., BRYSON S.T., et al.
2014A&A...566A.103L viz 16       D               6 359 67 High-resolution imaging of Kepler planet host candidates. A comprehensive comparison of different techniques. LILLO-BOX J., BARRADO D. and BOUY H.
2014ApJ...791..111W 16       D               3 56 53 Influence of stellar multiplicity on planet formation. II. Planets are less common in multiple-star systems with separations smaller than 1500 AU. WANG J., FISCHER D.A., XIE J.-W., et al.
2014ApJ...796...47M 16       D               1 76 57 Obliquities of Kepler stars: comparison of single- and multiple-transit systems. MORTON T.D. and WINN J.N.
2015ApJ...801....3M viz 16       D               1 3357 52 Photometric amplitude distribution of stellar rotation of KOIs–Indication for spin-orbit alignment of cool stars and high obliquity for hot stars. MAZEH T., PERETS H.B., McQUILLAN A., et al.
2015ApJS..217...16R viz 16       D               1 8625 84 Planetary candidates observed by Kepler. V. Planet sample from Q1-Q12 (36 months). ROWE J.F., COUGHLIN J.L., ANTOCI V., et al.
2015MNRAS.447.2714B viz 16       D               1 209 51 Flare stars across the H-R diagram. BALONA L.A.
2015ApJ...807..170H viz 16       D               3 2117 10 Time variation of Kepler transits induced by stellar Spots–A way to distinguish between prograde and retrograde motion. II. Application to KOIs. HOLCZER T., SHPORER A., MAZEH T., et al.
2015ApJ...809....8B viz 16       D               1 112329 139 Terrestrial planet occurrence rates for the Kepler GK dwarf sample. BURKE C.J., CHRISTIANSEN J.L., MULLALLY F., et al.
2015ApJ...813..100O viz 16       D               1 327 7 Deep GALEX UV survey of the Kepler field. I. Point source catalog. OLMEDO M., LLOYD J., MAMAJEK E.E., et al.
2015ApJ...813..130W viz 16       D               6 211 27 Influence of stellar multiplicity on planet formation. IV. Adaptive optics imaging of Kepler stars with multiple transiting planet candidates. WANG J., FISCHER D.A., XIE J.-W., et al.
2015ApJ...814..130M viz 16       D               3 2846 46 An increase in the mass of planetary systems around lower-mass stars. MULDERS G.D., PASCUCCI I. and APAI D.
2016ApJ...821...47B viz 16       D               1 217 14 Efficient geometric probabilities of multi-transiting exoplanetary systems from CORBITS. BRAKENSIEK J. and RAGOZZINE D.
2016ApJ...822...86M viz 16       D               1 6129 192 False positive probabilities for all Kepler objects of interest: 1284 newly validated planets and 428 likely false positives. MORTON T.D., BRYSON S.T., COUGHLIN J.L., et al.
2016AJ....152....8K viz 16       D               1 389 65 The impact of stellar multiplicity on planetary systems. I. The ruinous influence of close binary companions. KRAUS A.L., IRELAND M.J., HUBER D., et al.
2016ApJS..225....9H viz 16       D               3 2132 33 Transit timing observations from Kepler. IX. Catalog of the full long-cadence data set. HOLCZER T., MAZEH T., NACHMANI G., et al.
2016ApJS..225...32B viz 16       D               2 1473 68 Spectral properties of cool stars: extended abundance analysis of 1,617 planet-search stars. BREWER J.M., FISCHER D.A., VALENTI J.A., et al.
2016A&A...594A..39F viz 16       D               2 51408 21 Activity indicators and stellar parameters of the Kepler targets. An application of the ROTFIT pipeline to LAMOST-Kepler stellar spectra. FRASCA A., MOLENDA-ZAKOWICZ J., DE CAT P., et al.
2016AJ....152..181H viz 16       D               1 9279 9 SETI observations of exoplanets with the Allen Telescope Array. HARP G.R., RICHARDS J., TARTER J.C., et al.
2016AJ....152..187M viz 16       D               3 471 33 A super-solar metallicity for stars with hot rocky exoplanets. MULDERS G.D., PASCUCCI I., APAI D., et al.
2017AJ....153...71F viz 17       D               1 3575 46 The Kepler follow-up observation program. I. A catalog of companions to Kepler stars from high-resolution imaging. FURLAN E., CIARDI D.R., EVERETT M.E., et al.
2017MNRAS.465.2634A viz 17       D               3 5400 9 Transit shapes and self-organizing maps as a tool for ranking planetary candidates: application to Kepler and K2. ARMSTRONG D.J., POLLACCO D. and SANTERNE A.
2017AJ....154..107P viz 17       D               1 1306 56 The California-Kepler Survey. I. High-resolution spectroscopy of 1305 stars hosting Kepler transiting planets. PETIGURA E.A., HOWARD A.W., MARCY G.W., et al.
2017AJ....154..108J viz 17       D               1 3237 46 The California-Kepler Survey. II. Precise physical properties of 2025 Kepler planets and their host stars. JOHNSON J.A., PETIGURA E.A., FULTON B.J., et al.
2018ApJS..234....9O viz 17       D               2 436 4 A spectral approach to transit timing variations. OFIR A., XIE J.-W., JIANG C.-F., et al.
2018AJ....155...68W viz 17       D               1 509 10 Elemental abundances of Kepler Objects of Interest in APOGEE. I. Two distinct orbital period regimes inferred from host star iron abundances. WILSON R.F., TESKE J., MAJEWSKI S.R., et al.
2018ApJ...855..115B viz 17       D               1 1305 2 Identifying young Kepler planet host stars from Keck-HIRES spectra of lithium. BERGER T.A., HOWARD A.W. and BOESGAARD A.M.
2018MNRAS.474.2094A viz 17       D               1 1073 17 Inferring probabilistic stellar rotation periods using Gaussian processes. ANGUS R., MORTON T., AIGRAIN S., et al.
2018AJ....155..161Z viz 187       D     X         5 1274 10 Robo-AO Kepler survey. IV. The effect of nearby stars on 3857 planetary candidate systems. ZIEGLER C., LAW N.M., BARANEC C., et al.
2018ApJ...861..149F viz 17       D               1 2261 ~ The Kepler Follow-up Observation Program. II. Stellar parameters from medium- and high-resolution spectroscopy. FURLAN E., CIARDI D.R., COCHRAN W.D., et al.
2018AJ....156...83Z viz 17       D               1 337 1 Robo-AO Kepler Survey. V. The effect of physically associated stellar companions on planetary systems. ZIEGLER C., LAW N.M., BARANEC C., et al.
2018ApJS..237...38B viz 17       D               1 1111 ~ Spectral properties of cool stars: extended abundance analysis of Kepler Objects of Interest. BREWER J.M. and FISCHER D.A.
2018ApJ...866..104C 17       D               1 33 1 Identifying inflated super-Earths and photo-evaporated cores. CARRERA D., FORD E.B., IZIDORO A., et al.
2018AJ....156..292T viz 17       D               1 647 ~ The effects of stellar companions on the observed transiting exoplanet radius distribution. TESKE J.K., CIARDI D.R., HOWELL S.B., et al.
2019ApJ...875...29M viz 17       D               1 2918 ~ A spectroscopic analysis of the California-Kepler Survey sample. I. Stellar parameters, planetary radii, and a slope in the radius gap. MARTINEZ C.F., CUNHA K., GHEZZI L., et al.
2019A&A...624A..15S viz 2899 T   A S   X C       64 12 ~
Kepler-411: a four-planet system with an active host star.
SUN L., IOANNIDIS P., GU S., et al.
2019ApJS..241...29Y viz 17       D               1 3421 ~ The flare catalog and the flare activity in the Kepler mission. YANG H. and LIU J.
2020ApJ...890...23L viz 18       D               3 4935 ~ Current population statistics do not favor photoevaporation over core-powered mass loss as the dominant cause of the exoplanet radius gap. LOYD R.O.P., SHKOLNIK E.L., SCHNEIDER A.C., et al.
2020ApJ...890L..31L viz 18       D               1 85 ~ Mutual inclination excitation by stellar oblateness. LI G., DAI F. and BECKER J.
2020ApJ...893...67M viz 18       D               1 533 ~ A relationship between stellar age and spot coverage. MORRIS B.M.
2020MNRAS.497.4091M 45           X         1 57 ~ Dynamical evolution of two-planet systems and its connection with white dwarf atmospheric pollution. MALDONADO R.F., VILLAVER E., MUSTILL A.J., et al.
2020A&A...640A..48L viz 90           X         2 27 ~ Masses for the seven planets in K2-32 and K2-233. Four diverse planets in resonant chain and the first young rocky worlds. LILLO-BOX J., LOPEZ T.A., SANTERNE A., et al.
2021MNRAS.501.1878X 1120 T   A D     X C F     22 8 ~ Starspot evolution, differential rotation, and correlation between chromospheric and photospheric activities on
Kepler-411.
XU F., GU S. and IOANNIDIS P.
2021PASP..133a4401Y 93           X         2 33 ~ Searching for possible exoplanet transits from BRITE data through a machine learning technique. YEH L.-C. and JIANG I.-G.
2021ApJ...907L...5A 1381 T   A S   X C       27 9 ~
Kepler-411 differential rotation from three transiting planets.
ARAUJO A. and VALIO A.
2021MNRAS.502.2033J 19       D               1 17 ~ Stellar flares from blended and neighbouring stars in Kepler short cadence observations. JACKMAN J.A.G., SHKOLNIK E. and LOYD R.O.P.
2021MNRAS.503.4092B 159       D     X         4 124 ~ Revisiting the Kepler field with TESS: Improved ephemerides using TESS 2 min data. BATTLEY M.P., KUNIMOTO M., ARMSTRONG D.J., et al.
2021ApJ...921...24S 19       D               6 328 ~ The occurrence-weighted median planets discovered by transit surveys orbiting solar-type stars and their implications for planet formation and evolution. SCHLAUFMAN K.C. and HALPERN N.D.
2021AJ....162..294M viz 93           X         2 24 ~ Another superdense sub-Neptune in K2-182 b and refined mass measurements for K2-199 b and c. MURPHY J.M.A., KOSIAREK M.R., BATALHA N.M., et al.
2021ApJ...922L..23A 1987 T   A S   X C       40 5 ~
Kepler-411 star activity: connection between starspots and superflares.
ARAUJO A. and VALIO A.
2021A&A...656A.157B 345       D     X C       7 48 ~ Constraining stellar rotation and planetary atmospheric evolution of a dozen systems hosting sub-Neptunes and super-Earths. BONFANTI A., FOSSATI L., KUBYSHKINA D., et al.
2022MNRAS.510.5348Z 400           X         8 22 ~ Dynamo activity of the K dwarf KOI-883 from transit photometry mapping. ZALESKI S.M., VALIO A., CARTER B.D., et al.
2022AJ....163..208B 50           X         1 7 ~ WASP-35 and HAT-P-30/WASP-51: Reanalysis using TESS and Ground-based Transit Photometry. BAI L., GU S., WANG X., et al.
2022AJ....163..293T 50           X         1 44 ~ The TESS-Keck Survey. XI. Mass Measurements for Four Transiting Sub-Neptunes Orbiting K Dwarf TOI-1246. TURTELBOOM E.V., WEISS L.M., DRESSING C.D., et al.
2022AJ....164...27W 50           X         1 42 ~ Transit Timing Variations for AU Microscopii b and c. WITTROCK J.M., DREIZLER S., REEFE M.A., et al.
2022AJ....164...42J 50           X         1 79 ~ TESS Observations of Kepler Systems with Transit Timing Variations. JONTOF-HUTTER D., DALBA P.A. and LIVINGSTON J.H.

goto View the references in ADS


2022.10.02-04:25:47

© Université de Strasbourg/CNRS

    • Contact