Kepler-169 , the SIMBAD biblio

Kepler-169 , the SIMBAD biblio (58 results) C.D.S. - SIMBAD4 rel 1.8 - 2022.10.03CEST11:22:07


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2011ApJ...728..117B viz 16       D               1 321 239 Characteristics of Kepler planetary candidates based on the first data set. BORUCKI W.J., KOCH D.G., BASRI G., et al.
2011ApJ...736...19B viz 16       D               1 1507 742 Characteristics of planetary candidates observed by Kepler. II. Analysis of the first four months of data. BORUCKI W.J., KOCH D.G., BASRI G., et al.
2011ApJ...738..170M viz 16       D               1 997 198 On the low false positive probabilities of Kepler planet candidates. MORTON T.D. and JOHNSON J.A.
2011ApJS..197....2F viz 16       D               1 980 66 Transit timing observations from Kepler. I. Statistical analysis of the first four months. FORD E.B., ROWE J.F., FABRYCKY D.C., et al.
2012ApJS..199...24T viz 16       D               1 5393 51 Detection of potential transit signals in the first three quarters of Kepler mission data. TENENBAUM P., CHRISTIANSEN J.L., JENKINS J.M., et al.
2012ApJ...756..185F viz 16       D               1 1856 44 Transit timing observations from Kepler. V. Transit timing variation candidates in the first sixteen months from polynomial models. FORD E.B., RAGOZZINE D., ROWE J.F., et al.
2012ApJ...756..186S viz 16       D               1 811 35 Transit timing observations from Kepler. VI. Potentially interesting candidate systems from fourier-based statistical tests. STEFFEN J.H., FORD E.B., ROWE J.F., et al.
2013ApJS..204...24B viz 16       D               1 3274 779 Planetary candidates observed by Kepler. III. Analysis of the first 16 months of data. BATALHA N.M., ROWE J.F., BRYSON S.T., et al.
2013MNRAS.429.2001H viz 135       D     X C       3 140 33 150 new transiting planet candidates from Kepler Q1-Q6 data. HUANG X., BAKOS G.A. and HARTMAN J.D.
2013A&A...555A..58O viz 453       D S   X         11 171 45 An independent planet search in the Kepler dataset. I. One hundred new candidates and revised Kepler objects of interest. OFIR A. and DREIZLER S.
2013ApJ...774L..12S viz 16       D               1 469 25 A lack of short-period multiplanet systems with close-proximity pairs and the curious case of Kepler-42. STEFFEN J.H. and FARR W.M.
2013ApJ...775L..11M viz 16       D               1 2010 107 Stellar rotation periods of the Kepler Objects of Interest: a dearth of close-in planets around fast rotators. McQUILLAN A., MAZEH T. and AIGRAIN S.
2013ApJS..208...16M viz 16       D               2 1518 92 Transit timing observations from Kepler. VIII. Catalog of transit timing measurements of the first twelve quarters. MAZEH T., NACHMANI G., HOLCZER T., et al.
2013MNRAS.435.1126B 16       D               1 72 20 Exoplanet predictions based on the generalized Titius-Bode relation. BOVAIRD T. and LINEWEAVER C.H.
2013MNRAS.436L..25M 95       D     X         3 20 3 A linear distribution of orbits in compact planetary systems ? MIGASZEWSKI C., GOZDZIEWSKI K. and SLONINA M.
2014ApJS..210...19B viz 16       D               5 5860 162 Planetary candidates observed by Kepler IV: planet sample from Q1-Q8 (22 months). BURKE C.J., BRYSON S.T., MULLALLY F., et al.
2014ApJ...784...44L 243           X C       5 47 116 Validation of Kepler's multiple planet candidates. II. Refined statistical framework and descriptions of systems of special interest. LISSAUER J.J., MARCY G.W., BRYSON S.T., et al.
2014ApJ...784...45R viz 96       D     X         3 1691 227 Validation of Kepler's multiple planet candidates. III. Light curve analysis and announcement of hundreds of new multi-planet systems. ROWE J.F., BRYSON S.T., MARCY G.W., et al.
2014AJ....147..119C viz 16       D               1 8006 55 Contamination in the Kepler field. Identification of 685 KOIs as false positives via ephemeris matching based on Q1-Q12 data. COUGHLIN J.L., THOMPSON S.E., BRYSON S.T., et al.
2015ApJ...801....3M viz 16       D               1 3357 52 Photometric amplitude distribution of stellar rotation of KOIs–Indication for spin-orbit alignment of cool stars and high obliquity for hot stars. MAZEH T., PERETS H.B., McQUILLAN A., et al.
2015ApJS..217...16R viz 16       D               1 8625 84 Planetary candidates observed by Kepler. V. Planet sample from Q1-Q12 (36 months). ROWE J.F., COUGHLIN J.L., ANTOCI V., et al.
2015MNRAS.448.1956S 16       D               2 84 30 The period ratio distribution of Kepler's candidate multiplanet systems. STEFFEN J.H. and HWANG J.A.
2015MNRAS.448.3608B viz 16       D               6 156 6 Using the inclinations of Kepler systems to prioritize new Titius-Bode-based exoplanet predictions. BOVAIRD T., LINEWEAVER C.H. and JACOBSEN S.K.
2015ApJ...806L..26V 83           X         2 13 37 Consolidating and crushing exoplanets: did it happen here? VOLK K. and GLADMAN B.
2015ApJ...807..170H viz 16       D               4 2117 10 Time variation of Kepler transits induced by stellar Spots–A way to distinguish between prograde and retrograde motion. II. Application to KOIs. HOLCZER T., SHPORER A., MAZEH T., et al.
2015ApJ...809....8B viz 16       D               1 112329 139 Terrestrial planet occurrence rates for the Kepler GK dwarf sample. BURKE C.J., CHRISTIANSEN J.L., MULLALLY F., et al.
2015ApJ...813..100O viz 16       D               1 327 7 Deep GALEX UV survey of the Kepler field. I. Point source catalog. OLMEDO M., LLOYD J., MAMAJEK E.E., et al.
2015ApJ...814..130M viz 16       D               5 2846 46 An increase in the mass of planetary systems around lower-mass stars. MULDERS G.D., PASCUCCI I. and APAI D.
2016MNRAS.455.2980B 16       D               5 52 19 Oscillations of relative inclination angles in compact extrasolar planetary systems. BECKER J.C. and ADAMS F.C.
2016ApJ...821...47B viz 16       D               1 217 14 Efficient geometric probabilities of multi-transiting exoplanetary systems from CORBITS. BRAKENSIEK J. and RAGOZZINE D.
2016ApJ...822...86M viz 16       D               1 6129 192 False positive probabilities for all Kepler objects of interest: 1284 newly validated planets and 428 likely false positives. MORTON T.D., BRYSON S.T., COUGHLIN J.L., et al.
2016MNRAS.457.2480C 124           X   F     2 16 19 On the formation of compact planetary systems via concurrent core accretion and migration. COLEMAN G.A.L. and NELSON R.P.
2016AJ....152....8K viz 16       D               1 389 65 The impact of stellar multiplicity on planetary systems. I. The ruinous influence of close binary companions. KRAUS A.L., IRELAND M.J., HUBER D., et al.
2016ApJS..225....9H viz 16       D               4 2132 33 Transit timing observations from Kepler. IX. Catalog of the full long-cadence data set. HOLCZER T., MAZEH T., NACHMANI G., et al.
2017AJ....153...71F viz 17       D               1 3575 46 The Kepler follow-up observation program. I. A catalog of companions to Kepler stars from high-resolution imaging. FURLAN E., CIARDI D.R., EVERETT M.E., et al.
2017AJ....153..180S 17       D               2 119 3 A search for lost planets in the Kepler multi-planet systems and the discovery of the long-period, Neptune-sized exoplanet Kepler-150 f. SCHMITT J.R., JENKINS J.M. and FISCHER D.A.
2017MNRAS.465.2634A viz 17       D               5 5400 9 Transit shapes and self-organizing maps as a tool for ranking planetary candidates: application to Kepler and K2. ARMSTRONG D.J., POLLACCO D. and SANTERNE A.
2017MNRAS.468..549B 184       D     X   F     4 28 12 Effects of unseen additional planetary perturbers on compact extrasolar planetary systems. BECKER J.C. and ADAMS F.C.
2017AJ....154..107P viz 17       D               1 1306 56 The California-Kepler Survey. I. High-resolution spectroscopy of 1305 stars hosting Kepler transiting planets. PETIGURA E.A., HOWARD A.W., MARCY G.W., et al.
2017AJ....154..108J viz 17       D               1 3237 46 The California-Kepler Survey. II. Precise physical properties of 2025 Kepler planets and their host stars. JOHNSON J.A., PETIGURA E.A., FULTON B.J., et al.
2017A&A...603A..30S viz 17       D               10 2500 14 Observational evidence for two distinct giant planet populations. SANTOS N.C., ADIBEKYAN V., FIGUEIRA P., et al.
2017NewA...55....1H 17       D               1 146 2 Multiple planetary systems: properties of the current sample. HOBSON M.J. and GOMEZ M.
2018ApJS..234....9O viz 17       D               1 436 4 A spectral approach to transit timing variations. OFIR A., XIE J.-W., JIANG C.-F., et al.
2018ApJ...855..115B viz 17       D               1 1305 2 Identifying young Kepler planet host stars from Keck-HIRES spectra of lithium. BERGER T.A., HOWARD A.W. and BOESGAARD A.M.
2018MNRAS.474.2094A viz 17       D               1 1073 17 Inferring probabilistic stellar rotation periods using Gaussian processes. ANGUS R., MORTON T., AIGRAIN S., et al.
2018ApJS..237...38B viz 17       D               2 1111 ~ Spectral properties of cool stars: extended abundance analysis of Kepler Objects of Interest. BREWER J.M. and FISCHER D.A.
2018ApJ...866...99B viz 17       D               1 7129 101 Revised radii of Kepler stars and planet's using Gaia Data Release 2. BERGER T.A., HUBER D., GAIDOS E., et al.
2018AJ....156..292T viz 17       D               2 647 ~ The effects of stellar companions on the observed transiting exoplanet radius distribution. TESKE J.K., CIARDI D.R., HOWELL S.B., et al.
2019ApJ...875...29M viz 17       D               1 2918 ~ A spectroscopic analysis of the California-Kepler Survey sample. I. Stellar parameters, planetary radii, and a slope in the radius gap. MARTINEZ C.F., CUNHA K., GHEZZI L., et al.
2020MNRAS.491.5595P 511       D     X C       11 18 ~ Formation of compact systems of super-Earths via dynamical instabilities and giant impacts. POON S.T.S., NELSON R.P., JACOBSON S.A., et al.
2020ApJ...890...23L viz 18       D               5 4935 ~ Current population statistics do not favor photoevaporation over core-powered mass loss as the dominant cause of the exoplanet radius gap. LOYD R.O.P., SHKOLNIK E.L., SCHNEIDER A.C., et al.
2020ApJ...893L...1W 90               F     1 51 ~ The Kepler peas in a pod pattern is astrophysical. WEISS L.M. and PETIGURA E.A.
2020AJ....159..207B 18       D               2 150 ~ Transit duration variations in multiplanet systems. BOLEY A.C., VAN LAERHOVEN C. and GRANADOS CONTRERAS A.P.
2020AJ....160..108B viz 18       D               5 6855 ~ The Gaia-Kepler stellar properties catalog. II. Planet radius demographics as a function of stellar mass and age. BERGER T.A., HUBER D., GAIDOS E., et al.
2020MNRAS.498.5166P 45           X         1 25 ~ On the origin of the eccentricity dichotomy displayed by compact super-Earths: dynamical heating by cold giants. POON S.T.S. and NELSON R.P.
2020PASJ...72...24L 108       D     X         3 90 ~ The reliability of the Titius-Bode relation and its implications for the search for exoplanets. LARA P., CORDERO-TERCERO G. and ALLEN C.
2021ApJ...920L..34M 93               F     1 48 ~ Split peas in a pod: intra-system uniformity of super-Earths and sub-Neptunes. MILLHOLLAND S.C. and WINN J.N.
2022AJ....164...72M 100               F     1 61 ~ Edge-of-the-Multis: Evidence for a Transition in the Outer Architectures of Compact Multiplanet Systems. MILLHOLLAND S.C., HE M.Y. and ZINK J.K.

goto View the references in ADS


2022.10.03-11:22:07

© Université de Strasbourg/CNRS

    • Contact