Kepler-88 , the SIMBAD biblio

Kepler-88 , the SIMBAD biblio (72 results) C.D.S. - SIMBAD4 rel 1.8 - 2022.08.13CEST05:35:56


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2011ApJ...736...19B viz 16       D               1 1507 742 Characteristics of planetary candidates observed by Kepler. II. Analysis of the first four months of data. BORUCKI W.J., KOCH D.G., BASRI G., et al.
2011ApJ...738..170M viz 16       D               1 997 198 On the low false positive probabilities of Kepler planet candidates. MORTON T.D. and JOHNSON J.A.
2011ApJS..197....2F viz 16       D               1 980 66 Transit timing observations from Kepler. I. Statistical analysis of the first four months. FORD E.B., ROWE J.F., FABRYCKY D.C., et al.
2012ApJS..199...24T viz 16       D               1 5393 51 Detection of potential transit signals in the first three quarters of Kepler mission data. TENENBAUM P., CHRISTIANSEN J.L., JENKINS J.M., et al.
2012Natur.486..375B viz 16       D               1 378 334 An abundance of small exoplanets around stars with a wide range of metallicities. BUCHHAVE L.A., LATHAM D.W., JOHANSEN A., et al.
2012ApJ...756..185F viz 16       D               1 1856 44 Transit timing observations from Kepler. V. Transit timing variation candidates in the first sixteen months from polynomial models. FORD E.B., RAGOZZINE D., ROWE J.F., et al.
2012ApJ...756..186S viz 16       D               1 811 35 Transit timing observations from Kepler. VI. Potentially interesting candidate systems from fourier-based statistical tests. STEFFEN J.H., FORD E.B., ROWE J.F., et al.
2013ApJ...765..132C 42           X         1 4 16 The quasiperiodic automated transit search algorithm. CARTER J.A. and AGOL E.
2013ApJ...774...52L 200           X         5 18 36 Are the Kepler near-resonance planet pairs due to tidal dissipation? LEE M.H., FABRYCKY D. and LIN D.N.C.
2013ApJ...775L..11M viz 16       D               1 2010 107 Stellar rotation periods of the Kepler Objects of Interest: a dearth of close-in planets around fast rotators. McQUILLAN A., MAZEH T. and AIGRAIN S.
2013ApJS..208...16M viz 56       D     X         2 1518 92 Transit timing observations from Kepler. VIII. Catalog of transit timing measurements of the first twelve quarters. MAZEH T., NACHMANI G., HOLCZER T., et al.
2013ApJ...777....3N 525 T         X C       11 4 75
KOI-142, the king of transit variations, is a pair of planets near the 2:1 resonance.
NESVORNY D., KIPPING D., TERRELL D., et al.
2014ApJ...781...18C 42           X         1 19 42 The planetary system to KIC 11442793: a compact analogue to the solar system. CABRERA J., CSIZMADIA Sz., LEHMANN H., et al.
2013A&A...560A...4R viz 16       D               1 24132 153 Rotation and differential rotation of active Kepler stars. REINHOLD T., REINERS A. and BASRI G.
2014ApJS..210...19B viz 16       D               1 5860 162 Planetary candidates observed by Kepler IV: planet sample from Q1-Q8 (22 months). BURKE C.J., BRYSON S.T., MULLALLY F., et al.
2014A&A...561L...1B 764   K       X C       18 10 19 SOPHIE velocimetry of Kepler transit candidates. X.
KOI-142c: first radial velocity confirmation of a non-transiting exoplanet discovered by transit timing.
BARROS S.C.C., DIAZ R.F., SANTERNE A., et al.
2014ApJ...783..123C viz 16       D               1 221 18 Limits on surface gravities of Kepler planet-candidate host stars from non-detection of solar-like oscillations. CAMPANTE T.L., CHAPLIN W.J., LUND M.N., et al.
2014ApJ...784...45R viz 80           X         2 1691 227 Validation of Kepler's multiple planet candidates. III. Light curve analysis and announcement of hundreds of new multi-planet systems. ROWE J.F., BRYSON S.T., MARCY G.W., et al.
2014AJ....147..119C viz 16       D               1 8006 55 Contamination in the Kepler field. Identification of 685 KOIs as false positives via ephemeris matching based on Q1-Q12 data. COUGHLIN J.L., THOMPSON S.E., BRYSON S.T., et al.
2014ApJ...787..132D 367           X C       8 6 40 TTVFast: an efficient and accurate code for transit timing inversion problems. DECK K.M., AGOL E., HOLMAN M.J., et al.
2014ApJ...790...31N viz 161           X C       3 14 13 Photo-dynamical analysis of three Kepler Objects of Interest with significant transit timing variations. NESVORNY D., KIPPING D., TERRELL D., et al.
2014ApJ...796...47M 16       D               1 76 57 Obliquities of Kepler stars: comparison of single- and multiple-transit systems. MORTON T.D. and WINN J.N.
2015ApJ...801....3M viz 16       D               1 3357 52 Photometric amplitude distribution of stellar rotation of KOIs–Indication for spin-orbit alignment of cool stars and high obliquity for hot stars. MAZEH T., PERETS H.B., McQUILLAN A., et al.
2015ApJS..217...16R viz 16       D               1 8625 84 Planetary candidates observed by Kepler. V. Planet sample from Q1-Q12 (36 months). ROWE J.F., COUGHLIN J.L., ANTOCI V., et al.
2015ApJ...807..162J 138       D     X         4 61 4 The interstellar medium in the Kepler search volume. JOHNSON M.C., REDFIELD S. and JENSEN A.G.
2015ApJ...807..170H viz 16       D               1 2117 10 Time variation of Kepler transits induced by stellar Spots–A way to distinguish between prograde and retrograde motion. II. Application to KOIs. HOLCZER T., SHPORER A., MAZEH T., et al.
2015MNRAS.451.4060S 41           X         1 22 4 Ground-based transit observations of the HAT-P-18, HAT-P-19, HAT-P-27/WASP40 and WASP-21 systems. SEELIGER M., KITZE M., ERRMANN R., et al.
2015ApJ...813..100O viz 16       D               1 327 7 Deep GALEX UV survey of the Kepler field. I. Point source catalog. OLMEDO M., LLOYD J., MAMAJEK E.E., et al.
2015MNRAS.453.4089S 16       D               1 103 3 Tides alone cannot explain Kepler planets close to 2:1 MMR. SILBURT A. and REIN H.
2015ApJ...814..130M viz 16       D               1 2846 46 An increase in the mass of planetary systems around lower-mass stars. MULDERS G.D., PASCUCCI I. and APAI D.
2015MNRAS.454.4267B 43           X         1 11 27 Photodynamical mass determination of the multiplanetary system K2-19. BARROS S.C.C., ALMENARA J.M., DEMANGEON O., et al.
2016ApJ...816...17W 42           X         1 27 47 The search for extraterrestrial civilizations with large energy supplies. IV. The signatures and information content of transiting megastructures. WRIGHT J.T., CARTIER K.M.S., ZHAO M., et al.
2016ApJ...821...96D 83           X         2 11 11 Transit timing variations for planets near eccentricity-type mean motion resonances. DECK K.M. and AGOL E.
2016AJ....151..150M 41           X         1 13 11 Starspots on WASP-85. MOCNIK T., CLARK B.J.M., ANDERSON D.R., et al.
2016ApJS..225....9H viz 99       D     X         3 2132 33 Transit timing observations from Kepler. IX. Catalog of the full long-cadence data set. HOLCZER T., MAZEH T., NACHMANI G., et al.
2016A&A...594A..39F viz 16       D               1 51408 21 Activity indicators and stellar parameters of the Kepler targets. An application of the ROTFIT pipeline to LAMOST-Kepler stellar spectra. FRASCA A., MOLENDA-ZAKOWICZ J., DE CAT P., et al.
2016AJ....152..187M viz 16       D               1 471 33 A super-solar metallicity for stars with hot rocky exoplanets. MULDERS G.D., PASCUCCI I., APAI D., et al.
2017AJ....153...71F viz 17       D               1 3575 46 The Kepler follow-up observation program. I. A catalog of companions to Kepler stars from high-resolution imaging. FURLAN E., CIARDI D.R., EVERETT M.E., et al.
2017AJ....154..107P viz 17       D               1 1306 56 The California-Kepler Survey. I. High-resolution spectroscopy of 1305 stars hosting Kepler transiting planets. PETIGURA E.A., HOWARD A.W., MARCY G.W., et al.
2017AJ....154..108J viz 17       D               2 3237 46 The California-Kepler Survey. II. Precise physical properties of 2025 Kepler planets and their host stars. JOHNSON J.A., PETIGURA E.A., FULTON B.J., et al.
2017A&A...605A..37D 42         O X         1 6 4 Spin dynamics of close-in planets exhibiting large transit timing variations. DELISLE J.-B., CORREIA A.C.M., LELEU A., et al.
2018ApJ...855..115B viz 17       D               1 1305 2 Identifying young Kepler planet host stars from Keck-HIRES spectra of lithium. BERGER T.A., HOWARD A.W. and BOESGAARD A.M.
2018MNRAS.474.2094A viz 17       D               1 1073 17 Inferring probabilistic stellar rotation periods using Gaussian processes. ANGUS R., MORTON T., AIGRAIN S., et al.
2018MNRAS.478.2480P 43           X         1 27 2 The architecture and formation of the Kepler-30 planetary system. PANICHI F., GOZDZIEWSKI K., MIGASZEWSKI C., et al.
2018ApJ...861..149F viz 17       D               1 2261 ~ The Kepler Follow-up Observation Program. II. Stellar parameters from medium- and high-resolution spectroscopy. FURLAN E., CIARDI D.R., COCHRAN W.D., et al.
2018AJ....156...89P viz 43           X         1 10 ~ Dynamics and formation of the near-resonant K2-24 system: insights from transit-timing variations and radial velocities. PETIGURA E.A., BENNEKE B., BATYGIN K., et al.
2018ApJS..237...38B viz 17       D               1 1111 ~ Spectral properties of cool stars: extended abundance analysis of Kepler Objects of Interest. BREWER J.M. and FISCHER D.A.
2018ApJ...866...99B viz 17       D               1 7129 101 Revised radii of Kepler stars and planet's using Gaia Data Release 2. BERGER T.A., HUBER D., GAIDOS E., et al.
2018AJ....156..264F viz 17       D               1 1909 112 The California-Kepler Survey. VII. Precise planet radii leveraging Gaia DR2 reveal the stellar mass dependence of the Planet radius gap. FULTON B.J. and PETIGURA E.A.
2019MNRAS.483...38D 104       D       C       2 18 ~ Multicomponent power-density spectra of Kepler AGNs, an instrumental artefact or a physical origin? DOBROTKA A., BEZAK P., REVALSKI M., et al.
2019MNRAS.482.4146D 244     A     X C F     4 19 ~ Hidden planetary friends: on the stability of two-planet systems in the presence of a distant, inclined companion. DENHAM P., NAOZ S., HOANG B.-M., et al.
2019ApJ...875...29M viz 17       D               1 2918 ~ A spectroscopic analysis of the California-Kepler Survey sample. I. Stellar parameters, planetary radii, and a slope in the radius gap. MARTINEZ C.F., CUNHA K., GHEZZI L., et al.
2019ApJ...876...23G viz 17       D               1 496 ~ Multiple Populations of extrasolar gas giants. GODA S. and MATSUO T.
2019AJ....157..235C viz 1027     A S   X C       22 415 ~ Observations of the Kepler field with TESS: predictions for planet yield and observable features. CHRIST C.N., MONTET B.T. and FABRYCKY D.C.
2020ApJ...890...23L viz 18       D               2 4935 ~ Current population statistics do not favor photoevaporation over core-powered mass loss as the dominant cause of the exoplanet radius gap. LOYD R.O.P., SHKOLNIK E.L., SCHNEIDER A.C., et al.
2020AJ....159..120L viz 45           X         1 18 ~ It takes two planets in resonance to tango around K2-146. LAM K.W.F., KORTH J., MASUDA K., et al.
2020AJ....159..207B 90           X         2 150 ~ Transit duration variations in multiplanet systems. BOLEY A.C., VAN LAERHOVEN C. and GRANADOS CONTRERAS A.P.
2020AJ....159..242W viz 1702     A D     X C       38 16 ~ The discovery of the long-period, eccentric planet
Kepler-88 d and system characterization with radial velocities and photodynamical analysis.
WEISS L.M., FABRYCKY D.C., AGOL E., et al.
2020ApJ...899L..18J 358           X         8 9 ~ The importance of local interstellar conditions on the galactic cosmic-ray spectrum at exoplanets. JASINSKI J.M., NORDHEIM T.A., HASEGAWA Y., et al.
2020MNRAS.496.3101P 45           X         1 7 ~ Resonance in the K2-19 system is at odds with its high reported eccentricities. PETIT A.C., PETIGURA E.A., DAVIES M.B., et al.
2020AJ....160..108B viz 18       D               1 6855 ~ The Gaia-Kepler stellar properties catalog. II. Planet radius demographics as a function of stellar mass and age. BERGER T.A., HUBER D., GAIDOS E., et al.
2020MNRAS.497.4091M 45           X         1 57 ~ Dynamical evolution of two-planet systems and its connection with white dwarf atmospheric pollution. MALDONADO R.F., VILLAVER E., MUSTILL A.J., et al.
2021MNRAS.502.3746R 93           X         2 1 ~ Inclination dynamics of resonant planets under the influence of an inclined external companion. RODET L. and LAI D.
2021AJ....161..200J 47           X         1 12 ~ Observable predictions from perturber-coupled high-eccentricity tidal migration of warm Jupiters. JACKSON J.M., DAWSON R.I., SHANNON A., et al.
2021MNRAS.505.1293S 93           X         2 53 ~ Systematic search for long-term transit duration changes in Kepler transiting planets. SHAHAF S., MAZEH T., ZUCKER S., et al.
2021MNRAS.505.1817M 93           X         2 12 ~ The Earth-like Galactic cosmic ray intensity in the habitable zone of the M dwarf GJ 436. MESQUITA A.L., RODGERS-LEE D. and VIDOTTO A.A.
2021ApJ...921...24S 19       D               2 328 ~ The occurrence-weighted median planets discovered by transit surveys orbiting solar-type stars and their implications for planet formation and evolution. SCHLAUFMAN K.C. and HALPERN N.D.
2021A&A...655A..66L viz 93             C       1 12 ~ Alleviating the transit timing variation bias in transit surveys. I. RIVERS: Method and detection of a pair of resonant super-Earths around Kepler-1705. LELEU A., CHATEL G., UDRY S., et al.
2021AJ....162..283T 93             C       2 14 ~ A pair of warm giant planets near the 2:1 mean motion resonance around the K-dwarf star TOI-2202. TRIFONOV T., BRAHM R., ESPINOZA N., et al.
2022ApJ...925...38N 150           X C       2 20 ~ TOI-216: Resonant Constraints on Planet Migration. NESVORNY D., CHRENKO O. and FLOCK M.
2022ApJ...926..120V 50           X         1 33 ~ ExoMiner: A Highly Accurate and Explainable Deep Learning Classifier That Validates 301 New Exoplanets. VALIZADEGAN H., MARTINHO M.J.S., WILKENS L.S., et al.
2022AJ....163..225T 20       D               1 13 ~ TOI-1670 b and c: An Inner Sub-Neptune with an Outer Warm Jupiter Unlikely to Have Originated from High-eccentricity Migration. TRAN Q.H., BOWLER B.P., ENDL M., et al.

goto View the references in ADS


2022.08.13-05:35:56

© Université de Strasbourg/CNRS

    • Contact