Kepler-693 , the SIMBAD biblio

Kepler-693 , the SIMBAD biblio (41 results) C.D.S. - SIMBAD4 rel 1.8 - 2023.02.02CET21:44:14


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2011ApJ...736...19B viz 15       D               1 1507 742 Characteristics of planetary candidates observed by Kepler. II. Analysis of the first four months of data. BORUCKI W.J., KOCH D.G., BASRI G., et al.
2011ApJ...738..170M viz 15       D               1 997 198 On the low false positive probabilities of Kepler planet candidates. MORTON T.D. and JOHNSON J.A.
2011ApJS..197....2F viz 15       D               1 980 66 Transit timing observations from Kepler. I. Statistical analysis of the first four months. FORD E.B., ROWE J.F., FABRYCKY D.C., et al.
2011ApJS..197...12D 15       D               1 124 110 Lack of inflated radii for Kepler giant planet candidates receiving modest stellar irradiation. DEMORY B.-O. and SEAGER S.
2012AJ....143....4H viz 195           X C       4 15 23 Kepler cycle 1 observations of low-mass stars: new eclipsing binaries, single star rotation rates, and the nature and frequency of starspots. HARRISON T.E., COUGHLIN J.L., ULE N.M., et al.
2012ApJS..199...24T viz 16       D               1 5393 51 Detection of potential transit signals in the first three quarters of Kepler mission data. TENENBAUM P., CHRISTIANSEN J.L., JENKINS J.M., et al.
2012ApJ...752...53L 16       D               1 320 18 Debris disks in Kepler exoplanet systems. LAWLER S.M. and GLADMAN B.
2012ApJ...752...72D viz 16       D               1 229 7 A correlation between the eclipse depths of Kepler gas giant candidates and the metallicities of their parent stars. DODSON-ROBINSON S.E.
2012ApJ...756..185F viz 16       D               1 1856 44 Transit timing observations from Kepler. V. Transit timing variation candidates in the first sixteen months from polynomial models. FORD E.B., RAGOZZINE D., ROWE J.F., et al.
2012ApJ...756..186S viz 16       D               1 811 35 Transit timing observations from Kepler. VI. Potentially interesting candidate systems from fourier-based statistical tests. STEFFEN J.H., FORD E.B., ROWE J.F., et al.
2012AJ....144..165H 16       D               1 28 49 Observations of binary stars with the Differential Speckle Survey Instrument. IV. Observations of Kepler, CoRoT, and Hipparcos stars from the Gemini North Telescope. HORCH E.P., HOWELL S.B., EVERETT M.E., et al.
2013ApJ...771..107E viz 16       D               1 756 47 Spectroscopy of faint Kepler mission exoplanet candidate host stars. EVERETT M.E., HOWELL S.B., SILVA D.R., et al.
2013ApJ...775L..11M viz 16       D               1 2010 107 Stellar rotation periods of the Kepler Objects of Interest: a dearth of close-in planets around fast rotators. McQUILLAN A., MAZEH T. and AIGRAIN S.
2013ApJS..208...16M viz 16       D               1 1518 92 Transit timing observations from Kepler. VIII. Catalog of transit timing measurements of the first twelve quarters. MAZEH T., NACHMANI G., HOLCZER T., et al.
2014ApJS..210...19B viz 16       D               1 5860 162 Planetary candidates observed by Kepler IV: planet sample from Q1-Q8 (22 months). BURKE C.J., BRYSON S.T., MULLALLY F., et al.
2014AJ....147..119C viz 16       D               1 8008 55 Contamination in the Kepler field. Identification of 685 KOIs as false positives via ephemeris matching based on Q1-Q12 data. COUGHLIN J.L., THOMPSON S.E., BRYSON S.T., et al.
2015ApJ...801....3M viz 16       D               1 3357 52 Photometric amplitude distribution of stellar rotation of KOIs–Indication for spin-orbit alignment of cool stars and high obliquity for hot stars. MAZEH T., PERETS H.B., McQUILLAN A., et al.
2015ApJS..217...16R viz 16       D               1 8625 84 Planetary candidates observed by Kepler. V. Planet sample from Q1-Q12 (36 months). ROWE J.F., COUGHLIN J.L., ANTOCI V., et al.
2015ApJ...807..170H viz 16       D               1 2117 10 Time variation of Kepler transits induced by stellar Spots–A way to distinguish between prograde and retrograde motion. II. Application to KOIs. HOLCZER T., SHPORER A., MAZEH T., et al.
2015ApJ...814..130M viz 16       D               1 2846 46 An increase in the mass of planetary systems around lower-mass stars. MULDERS G.D., PASCUCCI I. and APAI D.
2016ApJ...822...86M viz 16       D               1 6129 192 False positive probabilities for all Kepler objects of interest: 1284 newly validated planets and 428 likely false positives. MORTON T.D., BRYSON S.T., COUGHLIN J.L., et al.
2016ApJS..225....9H viz 16       D               1 2132 33 Transit timing observations from Kepler. IX. Catalog of the full long-cadence data set. HOLCZER T., MAZEH T., NACHMANI G., et al.
2017AJ....153...71F viz 16       D               1 3575 46 The Kepler follow-up observation program. I. A catalog of companions to Kepler stars from high-resolution imaging. FURLAN E., CIARDI D.R., EVERETT M.E., et al.
2017MNRAS.465.2634A viz 16       D               1 5400 9 Transit shapes and self-organizing maps as a tool for ranking planetary candidates: application to Kepler and K2. ARMSTRONG D.J., POLLACCO D. and SANTERNE A.
2017AJ....154...64M viz 1210       D S   X C       28 17 6 Eccentric companions to Kepler-448b and Kepler-693b: clues to the formation of warm Jupiters. MASUDA K.
2018ApJS..234....9O viz 17       D               1 436 4 A spectral approach to transit timing variations. OFIR A., XIE J.-W., JIANG C.-F., et al.
2018ApJ...861..149F viz 17       D               1 2261 ~ The Kepler Follow-up Observation Program. II. Stellar parameters from medium- and high-resolution spectroscopy. FURLAN E., CIARDI D.R., COCHRAN W.D., et al.
2018ApJ...866...99B viz 17       D               1 7129 101 Revised radii of Kepler stars and planet's using Gaia Data Release 2. BERGER T.A., HUBER D., GAIDOS E., et al.
2019MNRAS.483.3465F 17       D               1 15 ~ Dynamical origin of S-type planets in close binary stars. FRAGIONE G.
2019AJ....157..166J 43           X         1 7 ~ The origin of Kepler-419b: a path to tidal migration via four-body secular interactions. JACKSON J.M., DAWSON R.I. and ZALESKY J.
2020ApJ...890...23L viz 17       D               1 4935 ~ Current population statistics do not favor photoevaporation over core-powered mass loss as the dominant cause of the exoplanet radius gap. LOYD R.O.P., SHKOLNIK E.L., SCHNEIDER A.C., et al.
2020AJ....159..223D 44           X         1 18 ~ Robustly detecting changes in warm Jupiters' transit impact parameters. DAWSON R.I.
2020NatAs...4..408H 44           X         1 28 ~ Dispersed Matter Planet Project discoveries of ablating planets orbiting nearby bright stars. HASWELL C.A., STAAB D., BARNES J.R., et al.
2020NatAs...4..419B 44           X         1 10 ~ An ablating 2.6 M⊕ planet in an eccentric binary from the Dispersed Matter Planet Project. BARNES J.R., HASWELL C.A., STAAB D., et al.
2020AJ....160..108B viz 17       D               1 6855 ~ The Gaia-Kepler stellar properties catalog. II. Planet radius demographics as a function of stellar mass and age. BERGER T.A., HUBER D., GAIDOS E., et al.
2020AJ....160..149D 44           X         1 6 ~ Multiple explanations for the single transit of KIC 5951458 based on radial velocity measurements extracted with a novel matched-template technique. DALBA P.A., FULTON B., ISAACSON H., et al.
2020ApJ...903..141S 44           X         1 24 ~ Statistical properties of habitable zones in stellar binary systems. SIMONETTI P., VLADILO G., SILVA L., et al.
2021AJ....161..200J 45           X         1 12 ~ Observable predictions from perturber-coupled high-eccentricity tidal migration of warm Jupiters. JACKSON J.M., DAWSON R.I., SHANNON A., et al.
2021MNRAS.505.1293S 90           X         2 53 ~ Systematic search for long-term transit duration changes in Kepler transiting planets. SHAHAF S., MAZEH T., ZUCKER S., et al.
2021AJ....162..166M 45           X         1 22 ~ Evidence for a nondichotomous solution to the Kepler dichotomy: mutual inclinations of Kepler planetary systems from transit duration variations. MILLHOLLAND S.C., HE M.Y., FORD E.B., et al.
2022AJ....164...42J 47           X         1 79 ~ TESS Observations of Kepler Systems with Transit Timing Variations. JONTOF-HUTTER D., DALBA P.A. and LIVINGSTON J.H.

goto View the references in ADS


2023.02.02-21:44:14

© Université de Strasbourg/CNRS

    • Contact