PTF 09cnd , the SIMBAD biblio

PTF 09cnd , the SIMBAD biblio (108 results) C.D.S. - SIMBAD4 rel 1.8 - 2023.01.27CET02:47:15

Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2011ApJ...727...15N 210       D     X C       5 34 107 The extreme hosts of extreme supernovae. NEILL J.D., SULLIVAN M., GAL-YAM A., et al.
2011ApJ...730...34S 94       D     X         3 33 78 SN 2010jl in UGC 5189: yet another luminous type IIn supernova in a metal-poor galaxy. STOLL R., PRIETO J.L., STANEK K.Z., et al.
2011Natur.474..484Q viz 11 ~ Hydrogen-poor superluminous stellar explosions. QUIMBY R.M., KULKARNI S.R., KASLIWAL M.M., et al.
2011ApJ...743..114C 699           X C       17 17 125 Pan-STARRS1 discovery of two ultraluminous supernovae at z ~ 0.9. CHOMIUK L., CHORNOCK R., SODERBERG A.M., et al.
2011BASI...39..375K 30 7 Transients in the local universe: systematically bridging the gap between novae and supernovae. KASLIWAL M.M.
2012ApJ...746..121C 81           X         2 13 97 Generalized semi-analytical models of supernova light curves. CHATZOPOULOS E., WHEELER J.C. and VINKO J.
2012MNRAS.422.2675T 508           X C       12 15 42 Detectability of high-redshift superluminous supernovae with upcoming optical and near-infrared surveys. TANAKA M., MORIYA T.J., YOSHIDA N., et al.
2012A&A...541A.129L 82             C       1 10 89 SN 2006oz: rise of a super-luminous supernova observed by the SDSS-II SN survey. LELOUDAS G., CHATZOPOULOS E., DILDAY B., et al.
2009ATel.2241....1C 1 1 2 VLA observations of the bright transient PTF09cnd. CHANDRA P., OFEK E.O., FRAIL D.A., et al.
2010ATel.2367....1C 78 T                   1 1 2 VLA second epoch observations of the bright transient
2012Sci...337..927G 5 31 322 Luminous supernovae. GAL-YAM A.
2013ApJ...763...42O viz 94       D       C       3 43 44 X-ray emission from supernovae in dense circumstellar matter environments: a search for collisionless shocks. OFEK E.O., FOX D., CENKO S.B., et al.
2013MNRAS.431..912Q 136       D     X C       3 25 100 Rates of superluminous supernovae at z ∼ 0.2. QUIMBY R.M., YUAN F., AKERLOF C., et al.
2013ApJ...767..162C 118           X C       2 26 45 PS1-10afx at z = 1.388: Pan-STARRS1 discovery of a new type of superluminous supernova. CHORNOCK R., BERGER E., REST A., et al.
2013ApJ...770....8K 120           X C       2 4 20 Luminous supernova-like UV/Optical/Infrared transients associated with ultra-long gamma-ray bursts from metal-poor blue supergiants. KASHIYAMA K., NAKAUCHI D., SUWA Y., et al.
2013ApJ...770..128I 201           X         5 23 205 Super-luminous type IC supernovae: catching a magnetar by the tail. INSERRA C., SMARTT S.J., JERKSTRAND A., et al.
2013ApJ...771...97L 277           X C       6 15 62 PS1-10bzj: a fast, hydrogen-poor superluminous supernova in a metal-poor host galaxy. LUNNAN R., CHORNOCK R., BERGER E., et al.
2013ApJ...771..136L 94       D       C       2 23 33 Superluminous x-rays from a superluminous supernova. LEVAN A.J., READ A.M., METZGER B.D., et al.
2013ApJ...773...76C 81           X         2 23 93 Analytical light curve models of superluminous supernovae: χ2-minimization of parameter fits. CHATZOPOULOS E., WHEELER J.C., VINKO J., et al.
2013ApJ...779...98H 41           X         1 12 62 Two superluminous supernovae from the early universe discovered by the supernova legacy survey. HOWELL D.A., KASEN D., LIDMAN C., et al.
2014ApJ...780...44C 43           X         1 17 103 The ultraviolet-bright, slowly declining transient PS1-11af as a partial tidal disruption event. CHORNOCK R., BERGER E., GEZARI S., et al.
2013Natur.502..346N 12 6 148 Slowly fading super-luminous supernovae that are not pair-instability explosions. NICHOLL M., SMARTT S.J., JERKSTRAND A., et al.
2014ApJ...787..138L 454       D     X C       11 32 122 Hydrogen-poor superluminous supernovae and long-duration gamma-ray bursts have similar host galaxies. LUNNAN R., CHORNOCK R., BERGER E., et al.
2014A&A...565A..70K 120           X C       2 14 45 Observational properties of low-redshift pair instability supernovae. KOZYREVA A., BLINNIKOV S., LANGER N., et al.
2011ATel.3841....1Q 41           X         1 2 8 Discovery of a luminous supernova, PTF 11rks. QUIMBY R.M., GAL-YAM A., ARCAVI I., et al.
2011ATel.3344....1Q 40           X         1 2 5 Confirmation of the luminous transient CSS110406:135058+261642 (=PTF11dij). QUIMBY R.M., STERNBERG A. and MATHESON T.
2014ApJ...796...87I 335       D S   X         8 28 57 Superluminous supernovae as standardizable candles and high-redshift distance probes. INSERRA C. and SMARTT S.J.
2014ApJ...797...24V viz 215       D     X C       5 20 62 The hydrogen-poor superluminous supernova iPTF 13ajg and its host galaxy in absorption and emission. VREESWIJK P.M., SAVAGLIO S., GAL-YAM A., et al.
2013RAA....13.1463O 39           X         1 11 12 SN 2009ip and SN 2010mc as dual-shock Quark-Novae. OUYED R., KONING N. and LEAHY D.
2010ATel.2979....1Q 39           X         1 2 6 Discovery of a luminous supernova, PTF 10vqv. QUIMBY R.M., KULKARNI S., OFEK E., et al.
2015MNRAS.448.1206M viz 161           X C       3 272 48 Selecting superluminous supernovae in faint galaxies from the first year of the Pan-STARRS1 Medium Deep Survey. McCRUM M., SMARTT S.J., REST A., et al.
2015AJ....149..165W 17       D               1 11 15 Testing cosmological models with Type IC super luminous supernovae. WEI J.-J., WU X.-F. and MELIA F.
2015MNRAS.449..917L 19       D               3 29 105 Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies. LELOUDAS G., SCHULZE S., KRUHLER T., et al.
2015MNRAS.449.1215P 81           X         2 25 41 DES13S2cmm: the first superluminous supernova from the Dark Energy Survey. PAPADOPOULOS A., D'ANDREA C.B., SULLIVAN M., et al.
2013ATel.5128....1S 39           X         1 4 1 Classification of super-luminous SN : MLS130517:131841-070443. SMARTT S.J., NICHOLL M., INSERRA C., et al.
2015ApJ...807L..18N 182       D     X C       4 12 61 LSQ14bdq: a type IC super-luminous supernova with a double-peaked light curve. NICHOLL M., SMARTT S.J., JERKSTRAND A., et al.
2015MNRAS.452.3869N 218       D     X         6 55 86 On the diversity of superluminous supernovae: ejected mass as the dominant factor. NICHOLL M., SMARTT S.J., JERKSTRAND A., et al.
2015ApJ...814..108Y 167           X         4 9 57 Detection of broad Hα emission lines in the late-time spectra of a hydrogen-poor superluminous supernova. YAN L., QUIMBY R., OFEK E., et al.
2015MNRAS.454.2321S 43           X         1 6 22 Insights into tidal disruption of stars from PS1-10jh. STRUBBE L.E. and MURRAY N.
2015ApJ...815L..10L 83             C       1 7 21 Polarimetry of the superluminous supernova LSQ14mo: no evidence for significant deviations from spherical symmetry. LELOUDAS G., PATAT F., MAUND J.R., et al.
2014ATel.5839....1L 40           X         1 3 4 PESSTO spectroscopic classification of optical transients. LELOUDAS G., ERGON M., TADDIA F., et al.
2016ApJ...818...77O 16       D               2 10 7 Quark-novae occurring in massive binaries : a universal energy source in superluminous supernovae with double-peaked light curves. OUYED R., LEAHY D. and KONING N.
2016ApJ...818...94K 128           X C       2 4 26 Multi-messenger tests for fast-spinning newborn pulsars embedded in stripped-envelope supernovae. KASHIYAMA K., MURASE K., BARTOS I., et al.
2016ApJ...819...35A viz 82             C       1 28 39 Rapidly rising transients in the supernova-superluminous supernova gap. ARCAVI I., WOLF W.M., HOWELL D.A., et al.
2016ApJ...819...51L 82             C       1 18 20 Late time multi-wavelength observations of Swift J1644+5734: a luminous Optical/IR bump and quiescent X-ray emission. LEVAN A.J., TANVIR N.R., BROWN G.C., et al.
2016MNRAS.457L..79N 140       D     X   F     3 14 35 Seeing double: the frequency and detectability of double-peaked superluminous supernova light curves. NICHOLL M. and SMARTT S.J.
2016MNRAS.457..351Y 83               F     1 7 14 Mass ejection by pulsational pair instability in very massive stars and implications for luminous supernovae. YOSHIDA T., UMEDA H., MAEDA K., et al.
2015ATel.7102....1L 40           X         1 10 6 PESSTO spectroscopic classification of optical transients. LE GUILLOU L., MITRA A., BAUMONT S., et al.
2016ApJ...823...83M 82             C       1 5 9 The jet-powered supernovae of ∼105M [?] population III stars are observable by euclid, WFIRST, WISH, and JWST. MATSUMOTO T., NAKAUCHI D., IOKA K., et al.
2016MNRAS.458...84A viz 179       D     X         5 127 37 A Hubble Space Telescope survey of the host galaxies of Superluminous Supernovae. ANGUS C.R., LEVAN A.J., PERLEY D.A., et al.
2016MNRAS.458.3455M 670   K   D S   X C       15 10 47 Spectrum formation in superluminous supernovae (Type I). MAZZALI P.A., SULLIVAN M., PIAN E., et al.
2016ApJ...826...39N 44           X         1 18 60 SN 2015BN: a detailed multi-wavelength view of a nearby superluminous supernova. NICHOLL M., BERGER E., SMARTT S.J., et al.
2016MNRAS.460.3232C 16       D               1 128 5 Physical conditions and element abundances in supernova and γ-ray burst host galaxies at different redshifts. CONTINI M.
2016ApJ...829...17S 1371     A S   X C       32 7 48 Type I superluminous supernovae as explosions inside non-hydrogen circumstellar envelopes. SOROKINA E., BLINNIKOV S., NOMOTO K., et al.
2016A&A...593A.115J 16       D               1 31 11 Taking stock of superluminous supernovae and long gamma-ray burst host galaxy comparison using a complete sample of LGRBs. JAPELJ J., VERGANI S.D., SALVATERRA R., et al.
2016ApJ...830...13P viz 383       D S   X         9 42 72 Host-galaxy properties of 32 low-redshift superluminous supernovae from the Palomar transient factory. PERLEY D.A., QUIMBY R.M., YAN L., et al.
2015ATel.8369....1B 40           X         1 4 2 PESSTO spectroscopic classification of optical transients. BAUMONT S., LE GUILLOU L., LE BRETON R., et al.
2015ATel.8437....1L 40           X         1 8 ~ PESSTO spectroscopic classification of optical transients. LE BRETON R., LE GUILLOU L., FRASER M., et al.
2016A&A...596A..67R 122           X C       2 60 9 SN 2012aa: A transient between Type Ibc core-collapse and superluminous supernovae. ROY R., SOLLERMAN J., SILVERMAN J.M., et al.
2017MNRAS.464.3568P 17       D               2 25 31 The volumetric rate of superluminous supernovae at z ∼ 1. PRAJS S., SULLIVAN M., SMITH M., et al.
2017A&A...602A...9C 289           X C       6 25 28 The evolution of superluminous supernova LSQ14mo and its interacting host galaxy system. CHEN T.-W., NICHOLL M., SMARTT S.J., et al.
2017ApJ...845...85L viz 16       D               1 47 35 Analyzing the largest spectroscopic data set of hydrogen-poor super-luminous supernovae. LIU Y.-Q., MODJAZ M. and BIANCO F.B.
2017MNRAS.470.3566C 429       D     X   F     10 22 37 Superluminous supernova progenitors have a half-solar metallicity threshold. CHEN T.-W., SMARTT S.J., YATES R.M., et al.
2017ApJ...848....6Y 83           X         2 23 26 Hydrogen-poor superluminous supernovae with late-time Hα emission: three events from the intermediate Palomar Transient Factory. YAN L., LUNNAN R., PERLEY D.A., et al.
2017ApJ...850...55N 16       D               2 41 37 The magnetar model for Type I superluminous supernovae. I. Bayesian analysis of the full multicolor light-curve sample with MOSFiT. NICHOLL M., GUILLOCHON J. and BERGER E.
2017ApJ...851...95S 16       D               1 24 13 Magnetar-powered superluminous supernovae must first be exploded by jets. SOKER N. and GILKIS A.
2018ApJ...852...81L viz 167           X C       3 32 24 Hydrogen-poor superluminous supernovae from the Pan-STARRS1 Medium Deep Survey. LUNNAN R., CHORNOCK R., BERGER E., et al.
2018MNRAS.473.1258S 17       D               2 75 37 Cosmic evolution and metal aversion in superluminous supernova host galaxies. SCHULZE S., KRUHLER T., LELOUDAS G., et al.
2018ApJ...853...57B 84             C       1 27 23 Gaia17biu/SN 2017egm in NGC 3191: the closest hydrogen-poor superluminous supernova to date is in a "normal," massive, metal-rich spiral galaxy. BOSE S., DONG S., PASTORELLO A., et al.
2018ApJ...854..175I 17       D               1 48 6 A statistical approach to identify superluminous supernovae and probe their diversity. INSERRA C., PRAJS S., GUTIERREZ C.P., et al.
2018ApJ...855....2Q 1521       D     X C       36 63 10 Spectra of hydrogen-poor superluminous supernovae from the Palomar Transient Factory. QUIMBY R.M., DE CIA A., GAL-YAM A., et al.
2018ApJ...856...56C 184       D     X         5 26 9 Jets in hydrogen-poor superluminous supernovae: constraints from a comprehensive analysis of radio observations. COPPEJANS D.L., MARGUTTI R., GUIDORZI C., et al.
2018A&A...611A..45R 84           X         2 47 6 Search for γ-ray emission from superluminous supernovae with the Fermi-LAT. RENAULT-TINACCI N., KOTERA K., NERONOV A., et al.
2018ApJ...860..100D viz 309       D     X         8 42 24 Light curves of hydrogen-poor superluminous supernovae from the Palomar Transient Factory. DE CIA A., GAL-YAM A., RUBIN A., et al.
2018MNRAS.478..110S 42           X         1 16 ~ Broad-band emission properties of central engine-powered supernova ejecta interacting with a circumstellar medium. SUZUKI A. and MAEDA K.
2018ApJ...864...45M viz 226       D     X         6 37 18 Results from a systematic survey of X-ray emission from hydrogen-poor superluminous SNe. MARGUTTI R., CHORNOCK R., METZGER B.D., et al.
2018ApJ...867..113M 17       D               2 37 ~ Systematic investigation of the fallback accretion-powered model for hydrogen-poor superluminous supernovae. MORIYA T.J., NICHOLL M. and GUILLOCHON J.
2018ApJ...869..166V 17       D               1 58 ~ Superluminous supernovae in LSST: rates, detection metrics, and light-curve modeling. VILLAR V.A., NICHOLL M. and BERGER E.
2019ApJ...871..102N 230       D S   X         5 20 ~ Nebular-phase spectra of superluminous supernovae: physical insights from observational and statistical properties. NICHOLL M., BERGER E., BLANCHARD P.K., et al.
2019MNRAS.482.1545S viz 102       D         F     2 320 ~ The Berkeley sample of stripped-envelope supernovae. SHIVVERS I., FILIPPENKO A.V., SILVERMAN J.M., et al.
2019ApJ...872...18M 85             C       1 19 ~ An embedded X-ray source shines through the aspherical AT 2018cow: revealing the inner workings of the most luminous fast-evolving optical transients. MARGUTTI R., METZGER B.D., CHORNOCK R., et al.
2019ApJ...874...68C 60       D     X         2 32 ~ A systematic study of superluminous supernova light-curve models using clustering. CHATZOPOULOS E. and TUMINELLO R.
2019ApJ...875..121L 43           X         1 4 ~ Imaging polarimetry of the Type I superluminous supernova 2018hti. LEE C.-H.
2019ApJ...886...24L 443       D     X C       10 18 ~ A search for late-time radio emission and fast radio bursts from superluminous supernovae. LAW C.J., OMAND C.M.B., KASHIYAMA K., et al.
2019ApJ...887...72L 85           X         2 17 ~ Pulsational pair-instability supernovae. I. Pre-collapse evolution and pulsational mass ejection. LEUNG S.-C., NOMOTO K. and BLINNIKOV S.
2020MNRAS.493.5170H 17       D               6 17 ~ Observing superluminous supernovae and long gamma-ray bursts as potential birthplaces of repeating fast radio bursts. HILMARSSON G.H., SPITLER L.G., KEANE E.F., et al.
2020ApJ...897..114B 17       D               1 67 ~ The pre-explosion mass distribution of hydrogen-poor superluminous supernova progenitors and new evidence for a mass-spin correlation. BLANCHARD P.K., BERGER E., NICHOLL M., et al.
2020MNRAS.497..318L 827           X C F     17 15 ~ SN 2018hti: a nearby superluminous supernova discovered in a metal-poor galaxy. LIN W.L., WANG X.F., LI W.X., et al.
2020ApJ...901...61L viz 174           X C       3 27 ~ Four (super)luminous supernovae from the first months of the ZTF survey. LUNNAN R., YAN L., PERLEY D.A., et al.
2020ApJ...904...74G 17       D               1 145 ~ FLEET: a redshift-agnostic machine learning pipeline to rapidly identify hydrogen-poor superluminous supernovae. GOMEZ S., BERGER E., BLANCHARD P.K., et al.
2020A&A...643A..47O 61       D     X         2 93 ~ The interacting nature of dwarf galaxies hosting superluminous supernovae. ORUM S.V., IVENS D.L., STRANDBERG P., et al.
2021MNRAS.500.5142F 18       D               1 114 ~ From core collapse to superluminous: the rates of massive stellar explosions from the Palomar Transient Factory. FROHMAIER C., ANGUS C.R., VINCENZI M., et al.
2021ApJ...909...24K 197       D     X         5 93 ~ Photospheric velocity gradients and ejecta masses of hydrogen-poor superluminous supernovae: proxies for distinguishing between fast and slow events. KONYVES-TOTH R. and VINKO J.
2021MNRAS.502.1678K 45           X         1 51 ~ SN 2020ank: a bright and fast-evolving H-deficient superluminous supernova. KUMAR A., KUMAR B., PANDEY S.B., et al.
2021MNRAS.502.2120F 134           X C       2 23 ~ SN 2017gci: a nearby Type I Superluminous Supernova with a bumpy tail. FIORE A., CHEN T.-W., JERKSTRAND A., et al.
2020ATel13936....1P 44           X         1 3 ~ Discovery with the Liverpool Telescope of the superluminous supernova SN 2020qlb (ZTF20abobpcb, ATLAS20vmc). PEREZ-FOURNON I., POIDEVIN F., JIMENEZ ANGEL C., et al.
2021ApJ...912...21E 421       D S   X         9 125 ~ Late-time radio and millimeter observations of superluminous supernovae and long gamma-ray bursts: implications for central engines, fast radio bursts, and obscured star formation. EFTEKHARI T., MARGALIT B., OMAND C.M.B., et al.
2021MNRAS.504.2535I 18       D               1 31 ~ The first Hubble diagram and cosmological constraints using superluminous supernovae. INSERRA C., SULLIVAN M., ANGUS C.R., et al.
2018ATel11986....1L 42           X         1 3 ~ ZTF Discovery and Classification of a Young Superluminous Supernova, SN2018fcg (ZTF18abmasep). LUNNAN R., YAN L., FREMLING C., et al.
2021ApJ...915...80L 45           X         1 12 ~ Fast blue optical transients due to circumstellar interaction and the mysterious supernova SN 2018gep. LEUNG S.-C., FULLER J. and NOMOTO K.
2018ATel12183....1A 42           X         1 2 ~ FLOYDS Classification of AT 2018hti / ATLAS18yff as a Young Nearby SLSN-I. ARCAVI I., BURKE J., HIRAMATSU D., et al.
2021ApJ...922...17H 466       D     X         11 40 ~ A VLA survey of late-time radio emission from superluminous supernovae and the host galaxies. HATSUKADE B., TOMINAGA N., MOROKUMA T., et al.
2022ApJ...931..153S 65       D     X         2 84 ~ Constraints on the Explosion Timescale of Core-collapse Supernovae Based on Systematic Analysis of Light Curves. SAITO S., TANAKA M., SAWADA R., et al.
2022ATel15498....1D 47           X         1 4 ~ Spectroscopic Classification of Optical Transients with SOAR/Goodman. DAVIS K.W., FOLEY R.J., DIMITRIADIS G., et al.
2022ApJ...933...14H 19       D               1 35 ~ Bumpy Declining Light Curves Are Common in Hydrogen-poor Superluminous Supernovae. HOSSEINZADEH G., BERGER E., METZGER B.D., et al.
2022A&A...666A..30P 187           X C       3 43 ~ SN 2018bsz: A Type I superluminous supernova with aspherical circumstellar material. PURSIAINEN M., LELOUDAS G., PARASKEVA E., et al.
2022ApJ...940...69K 19       D               2 32 ~ Premaximum Spectroscopic Diversity of Hydrogen-poor Superluminous Supernovae. KONYVES-TOTH R.
2022ApJ...941..107G 47           X         1 238 ~ Luminous Supernovae: Unveiling a Population between Superluminous and Normal Core-collapse Supernovae. GOMEZ S., BERGER E., NICHOLL M., et al.

goto View the references in ADSLimited to 100


© Université de Strasbourg/CNRS

    • Contact